
05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 1 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Computers

Getting started

Raspberry Pi OS

Con5guration

config.txt

Legacy config.txt
options

The Linux kernel

Remote access

Camera software

AI Kit and AI HAT+
software

Raspberry Pi
hardware

Introduction

Schematics and
mechanical
drawings

Product
compliance and
safety

Frequency
management

Documentation
Search ⌘ K

Edit this on GitHub

Raspberry Pi makes computers in several different series:

The Flagship series, often referred to by the shorthand "Raspberry Pi", offers high-
performance hardware, a full Linux operating system, and a variety of common ports in
a form factor roughly the size of a credit card.

The Keyboard series, offers high-performance Flagship hardware, a full Linux operating
system, and a variety of common ports bundled inside a keyboard form factor.

The Zero series offers a full Linux operating system and essential ports at an affordable
price point in a minimal form factor with low power consumption.

The Compute Module series, often referred to by the shorthand "CM", offers high-
performance hardware and a full Linux operating system in a minimal form factor
suitable for industrial and embedded applications. Compute Module models feature
hardware equivalent to the corresponding Gagship models, but with fewer ports and no
on-board GPIO pins. Instead, users should connect Compute Modules to a separate
baseboard that provides the ports and pins required for a given application.

Additionally, Raspberry Pi makes the Pico series of tiny, versatile microcontroller boards.
Pico models do not run Linux or allow for removable storage, but instead allow
programming by Gashing a binary onto on-board Gash storage.

Model B indicates the presence of an Ethernet port. Model A indicates a lower-cost model
in a smaller form factor with no Ethernet port, reduced RAM, and fewer USB ports to limit
board height.

Model SoC Memory GPIO Connectivity

Raspberry Pi Model B

BCM28
35

256MB
512MB

26-pin GPIO
header HDMI

2× USB 2.0
standard 15-pin,
1.0mm pitch, 16mm
width, CSI (camera)
port
standard 15-pin,
1.0mm pitch, 16mm
width, DSI (display)
port
3.5mm audio jack
RCA composite
video
100Mb/s Ethernet
RJ45
SD card slot
micro USB power

Raspberry Pi Model A

BCM28
35

256MB 26-pin GPIO
header HDMI

USB 2.0
standard 15-pin,
1.0mm pitch, 16mm
width, CSI (camera)
port
standard 15-pin,
1.0mm pitch, 16mm
width, DSI (display)
port
3.5mm audio jack

Raspberry Pi hardware
Introduction

Flagship series

On this page

Introduction

Schematics and

mechanical drawings

Product compliance and

safety

Frequency management

and thermal control

Raspberry Pi boot EEPROM

Boot diagnostics

Raspberry Pi boot modes

USB boot modes

USB mass storage boot

Network booting

GPIO boot mode

NVMe SSD boot

HTTP boot

Boot sequence

EEPROM boot Oow

Raspberry Pi bootloader

con5guration

Display Parallel Interface

(DPI)

GPIO and the 40-pin header

GPIO pads control

Industrial use of the

Raspberry Pi

OTP register and bit

de5nitions

Raspberry Pi connector for

PCIe

Power button

Power supply

Real Time Clock (RTC)

Serial peripheral interface

(SPI)

Universal Serial Bus (USB)

Raspberry Pi revision codes

https://www.raspberrypi.com/documentation
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/introduction.adoc
https://en.wikipedia.org/wiki/Microcontroller
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2835
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2835

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 2 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

RCA composite
video
SD card slot
micro USB power

Raspberry Pi Model B+

BCM28
35

512MB 40-pin GPIO
header HDMI

4× USB 2.0
standard 15-pin,
1.0mm pitch, 16mm
width, CSI (camera)
port
standard 15-pin,
1.0mm pitch, 16mm
width, DSI (display)
port
3.5mm AV jack
100Mb/s Ethernet
RJ45
microSD card slot
micro USB power

Raspberry Pi Model A+

BCM28
35

256MB
512MB

40-pin GPIO
header HDMI

USB 2.0
standard 15-pin,
1.0mm pitch, 16mm
width, CSI (camera)
port
standard 15-pin,
1.0mm pitch, 16mm
width, DSI (display)
port
3.5mm AV jack
microSD card slot
micro USB power

Raspberry Pi 2 Model B

BCM28
36 (in
version
1.2,
switche
d to
BCM28
37)

1 GB 40-pin GPIO
header HDMI

4× USB 2.0
standard 15-pin,
1.0mm pitch, 16mm
width, CSI (camera)
port
standard 15-pin,
1.0mm pitch, 16mm
width, DSI (display)
port
3.5mm AV jack
100Mb/s Ethernet
RJ45
microSD card slot
micro USB power

BCM28
37

1 GB 40-pin GPIO
header HDMI

4× USB 2.0
standard 15-pin,
1.0mm pitch, 16mm
width, CSI (camera)
port
standard 15-pin,
1.0mm pitch, 16mm
width, DSI (display)
port
3.5mm AV jack
100Mb/s Ethernet

https://www.raspberrypi.com/documentation/computers/processors.html#bcm2835
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2835
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2836
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2837
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2837

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 3 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Raspberry Pi 3 Model B

RJ45
2.4GHz single-band
802.11n Wi-Fi
(35Mb/s)
Bluetooth 4.1,
Bluetooth Low
Energy (BLE)
microSD card slot
micro USB power

Raspberry Pi 3 Model B+

BCM28
37b0

1GB 40-pin GPIO
header HDMI

4× USB 2.0
standard 15-pin,
1.0mm pitch, 16mm
width, CSI (camera)
port
standard 15-pin,
1.0mm pitch, 16mm
width, DSI (display)
port
3.5mm AV jack
300Mb/s Ethernet
RJ45 with PoE
support
2.4/5GHz dual-band
802.11ac Wi-Fi
(100Mb/s)
Bluetooth 4.2,
Bluetooth Low
Energy (BLE)
microSD card slot
micro USB power

Raspberry Pi 3 Model A+

BCM28
37b0

512 MB 40-pin GPIO
header HDMI

USB 2.0
standard 15-pin,
1.0mm pitch, 16mm
width, CSI (camera)
port
standard 15-pin,
1.0mm pitch, 16mm
width, DSI (display)
port
3.5mm AV jack
2.4/5GHz dual-band
802.11ac Wi-Fi
(100Mb/s)
Bluetooth 4.2,
Bluetooth Low
Energy (BLE)
microSD card slot
micro USB power

BCM27
11

1GB
2GB
4GB
8GB

40-pin GPIO
header 2× micro HDMI

2× USB 2.0
2× USB 3.0
standard 15-pin,
1.0mm pitch, 16mm
width, CSI (camera)
port

https://www.raspberrypi.com/documentation/computers/processors.html#bcm2837b0
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2837b0
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2711

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 4 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Raspberry Pi 4 Model B

standard 15-pin,
1.0mm pitch, 16mm
width, DSI (display)
port
3.5mm AV jack
Gigabit (1Gb/s)
Ethernet RJ45 with
PoE+ support
2.4/5GHz dual-band
802.11ac Wi-Fi
(120Mb/s)
Bluetooth 5,
Bluetooth Low
Energy (BLE)
microSD card slot
USB-C power (5V 3A
(15W))

Raspberry Pi 5

BCM27
12

2GB
4GB
8GB
16GB

40-pin GPIO
header 2× micro HDMI

2× USB 2.0
2× USB 3.0
2× mini 22-pin,
0.5mm (]ne) pitch,
11.5mm width,
combined CSI
(camera)/DSI
(display) ports
single-lane PCIe FFC
connector
UART connector
RTC battery
connector
four-pin JST-SH
PWM fan connector
Gigabit (1Gb/s)
Ethernet RJ45 with
PoE+ support
2.4/5GHz dual-band
802.11ac Wi-Fi 5
(300Mb/s)
Bluetooth 5,
Bluetooth Low
Energy (BLE)
microSD card slot
USB-C power (5V 5A
(25W), or 5V 3A
(15W) with a 600mA
peripheral limit)

For more information about the ports on the Raspberry Pi Gagship series, see the
Schematics and mechanical drawings.

Keyboard series devices use model identiQers of the form <X00>, where X indicates the
corresponding Flagship series device. For instance, "Raspberry Pi 500" is the keyboard
version of the Raspberry Pi 5.

Model SoC Memory GPIO Connectivity

BCM27
11

4GB 40-pin GPIO
header 2× micro HDMI

USB 2.0
2× USB 3.0
Gigabit (1Gb/s)
Ethernet RJ45
2.4/5GHz dual-band

Keyboard series

https://www.raspberrypi.com/documentation/computers/processors.html#bcm2712
https://datasheets.raspberrypi.com/pcie/pcie-connector-standard.pdf
https://datasheets.raspberrypi.com/debug/debug-connector-specification.pdf
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2711

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 5 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Raspberry Pi 400

802.11ac Wi-Fi
(120Mb/s)
Bluetooth 5,
Bluetooth Low
Energy (BLE)
microSD card slot
USB-C power (5V 3A
(15W))

Raspberry Pi 500

BCM27
12

8GB 40-pin GPIO
header 2× micro HDMI

USB 2.0
2× USB 3.0
Gigabit (1Gb/s)
Ethernet RJ45
2.4/5GHz dual-band
802.11ac Wi-Fi 5
(300Mb/s)
Bluetooth 5,
Bluetooth Low
Energy (BLE)
microSD card slot
USB-C power (5V 5A
(25W), or 5V 3A
(15W) with a 600mA
peripheral limit)

Models with the H suTx have header pins pre-soldered to the GPIO header. Models that
lack the H suTx do not come with header pins attached to the GPIO header; the user must
solder pins manually or attach a third-party pin kit.

All Zero models have the following connectivity:

a microSD card slot

a mini HDMI port

2× micro USB ports (one for input power, one for external devices)

Since version 1.3 of the original Zero, all Zero models also include:

a mini 22-pin, 0.5mm (Qne) pitch, 11.5mm width, CSI (camera) port

Model SoC Memory GPIO Wireless Connectivity

Raspberry Pi Zero

BCM283
5

512MB 40-pin
GPIO
header
(unpopul
ated)

none

BCM283
5

512MB 40-pin
GPIO
header
(unpopul
ated)

2.4GHz single-
band 802.11n Wi-
Fi (35Mb/s)
Bluetooth 4.0,
Bluetooth Low
Energy (BLE)

Zero series

https://www.raspberrypi.com/documentation/computers/processors.html#bcm2712
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2835
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2835

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 6 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Raspberry Pi Zero W

Raspberry Pi Zero WH

BCM283
5

512MB 40-pin
GPIO
header

2.4GHz single-
band 802.11n Wi-
Fi (35Mb/s)
Bluetooth 4.0,
Bluetooth Low
Energy (BLE)

Raspberry Pi Zero 2 W

RP3A0 512MB 40-pin
GPIO
header
(unpopul
ated)

2.4GHz single-
band 802.11n Wi-
Fi (35Mb/s)
Bluetooth 4.2,
Bluetooth Low
Energy (BLE)

Raspberry Pi Zero 2 WH

RP3A0 512MB 40-pin
GPIO
header

2.4GHz single-
band 802.11n Wi-
Fi (35Mb/s)
Bluetooth 4.2,
Bluetooth Low
Energy (BLE)

Model SoC Memory Storage Form
factor

Wireless
Connectivity

Raspberry Pi Compute Module 1

BCM28
35

512MB 4GB DDR2
SO-
DIMM

none

BCM28
37

1GB 0GB
(Lite)
4GB

DDR2
SO-
DIMM

none

Compute Module series

https://www.raspberrypi.com/documentation/computers/processors.html#bcm2835
https://www.raspberrypi.com/documentation/computers/processors.html#rp3a0
https://www.raspberrypi.com/documentation/computers/processors.html#rp3a0
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2835
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2837

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 7 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Raspberry Pi Compute Module 3

Raspberry Pi Compute Module 3+

BCM28
37b0

1GB 0GB
(Lite)
8GB
16GB
32GB

DDR2
SO-
DIMM

none

Raspberry Pi Compute Module 4S

BCM27
11

1GB
2GB
4GB
8GB

0GB
(Lite)
8GB
16GB
32GB

DDR2
SO-
DIMM

none

Raspberry Pi Compute Module 4

BCM27
11

1GB
2GB
4GB
8GB

0GB
(Lite)
8GB
16GB
32GB

dual
100-pin
high
density
connect
ors

optional:

2.4/5GHz dual-
band 802.11ac
Wi-Fi 5
(300Mb/s)
Bluetooth 5,
Bluetooth Low
Energy (BLE)

Raspberry Pi Compute Module 5

BCM27
12

2GB
4GB
8GB

0GB
(Lite)
16GB
32GB
64GB

dual
100-pin
high
density
connect
ors

optional:

2.4/5GHz dual-
band 802.11ac
Wi-Fi 5
(300Mb/s)
Bluetooth 5,
Bluetooth Low
Energy (BLE)

NOTE

Compute Modules that use the physical DDR2 SO-DIMM form factor are not
compatible with DDR2 SO-DIMM electrical speciQcations.

For more information about Raspberry Pi Compute Modules, see the Compute Module
documentation.

Models with the H suTx have header pins pre-soldered to the GPIO header. Models that
lack the H suTx do not come with header pins attached to the GPIO header; the user must

Pico microcontrollers

https://www.raspberrypi.com/documentation/computers/processors.html#bcm2837b0
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2711
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2711
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2712
https://www.raspberrypi.com/documentation/computers/compute-module.html

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 8 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

solder pins manually or attach a third-party pin kit.

Model SoC Memory Storage GPIO Wireless
Connectivity

Raspberry Pi Pico

RP2040 264KB 2MB two 20-
pin
GPIO
headers
(unpop
ulated)

none

Raspberry Pi Pico H

RP2040 264KB 2MB two 20-
pin
GPIO
headers

none

Raspberry Pi Pico W

RP2040 264KB 2MB two 20-
pin
GPIO
headers
(unpop
ulated)

2.4GHz single-
band 802.11n
Wi-Fi (10Mb/s)
Bluetooth 5.2,
Bluetooth Low
Energy (BLE)

Raspberry Pi Pico WH

RP2040 264KB 2MB two 20-
pin
GPIO
headers

2.4GHz single-
band 802.11n
Wi-Fi (10Mb/s)
Bluetooth 5.2,
Bluetooth Low
Energy (BLE)

Raspberry Pi Pico 2

RP2350 520KB 4MB two 20-
pin
GPIO
headers
(unpop
ulated)

none

RP2350 520KB 4MB two 20-
pin
GPIO
headers
(unpop
ulated)

2.4GHz single-
band 802.11n
Wi-Fi (10Mb/s)
Bluetooth 5.2,
Bluetooth Low
Energy (BLE)

https://www.raspberrypi.com/documentation/microcontrollers/silicon.html#rp2040
https://www.raspberrypi.com/documentation/microcontrollers/silicon.html#rp2040
https://www.raspberrypi.com/documentation/microcontrollers/silicon.html#rp2040
https://www.raspberrypi.com/documentation/microcontrollers/silicon.html#rp2040
https://www.raspberrypi.com/documentation/microcontrollers/silicon.html#rp2350
https://www.raspberrypi.com/documentation/microcontrollers/silicon.html#rp2350

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 9 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Raspberry Pi Pico 2 W

For more information about Raspberry Pi Pico models, see the Pico documentation.

Edit this on GitHub

Schematics for the various Raspberry Pi board versions:

Mechanical drawings, PDF

STEP Qle for Raspberry Pi 5

Schematics, revision 4.0

Mechanical drawings, PDF

Mechanical drawings, DXF

Schematics, revision 1.0

Mechanical drawings, PDF

Mechanical drawings, DXF

Case drawings, PDF

Schematics, revision 1.0

Mechanical drawings, PDF

Case drawings, PDF

Schematics, revision 1.2

Mechanical drawings, PDF

Mechanical drawings, DXF

Schematics, revision 1.2

Schematics, revision 1.2

Mechanical drawings, PDF

Mechanical drawings, DXF

Schematics and mechanical drawings

Raspberry Pi 5

Raspberry Pi 4 Model B

Raspberry Pi 3 Model B+

Raspberry Pi 3 Model A+

Raspberry Pi 3 Model B

Raspberry Pi 2 Model B

Raspberry Pi 1 Model B+

https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/raspberry-pi-schematics.adoc
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/rpi5/RaspberryPi5-step.zip
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-mechanical-drawing.dxf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-plus-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-plus-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-plus-mechanical-drawing.dxf
https://datasheets.raspberrypi.com/case/raspberry-pi-3-b-plus-case-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-a-plus-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-a-plus-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/case/raspberry-pi-3-a-plus-case-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-mechanical-drawing.dxf
https://datasheets.raspberrypi.com/rpi2/raspberry-pi-2-b-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpi/raspberry-pi-b-plus-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpi/raspberry-pi-b-plus-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/rpi/raspberry-pi-b-plus-mechanical-drawing.dxf

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 10 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Schematics, revision 1.1

NOTE

Mechanical drawings for the Raspberry Pi 3 Model A+ are also applicable to the
Raspberry Pi 1 Model A+.

Schematics

Mechanical drawings, PDF

Test pad positions

The Raspberry Pi Zero 2 W has a number of test pad locations used during production of
the board.

Label Function X (mm from origin) Y (mm from origin)

STATUS_LED Power state of LED
(LOW = ON)

5.15 8.8

CORE Processor power 6.3 18.98

RUN Connect to GND to
reset

8.37 22.69

5V 5V input 8.75 11.05

5V 5V input 11.21 6.3

GND Ground pin 10.9 3.69

GND Ground pin 17.29 2.41

USB_DP USB port 22.55 1.92

USB_DM USB port 24.68 1.92

OTG On-the-go ID pin 39.9 7.42

1V8 1.8V analog supply 42.03 8.42

TV Composite TV out 45.58 3.17

GND Ground pin 49.38 3.05

GND Ground pin 55.99 22.87

3V3 3.3V I/O supply 48.55 22.44

SD_CLK SD Card clock pin 60.95 18.45

SD_CMD SD Card command 58.2 16.42

Raspberry Pi 1 Model A+

Raspberry Pi Zero 2 W

Test pad locations

https://datasheets.raspberrypi.com/rpi/raspberry-pi-a-plus-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-test-pads.pdf

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 11 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

pin

SD_DAT0 SD data pin 58.13 20.42

SD_DAT1 SD data pin 60.65 21.1

SD_DAT2 SD data pin 57.78 13.57

SD_DAT3 SD data pin 60.8 15.22

BT_ON Bluetooth power
status

25.13 19.55

WL_ON Wireless LAN power
status

27.7 19.2

Schematics, revision 1.1

Mechanical drawings, PDF

Schematics, revision 1.3

Mechanical drawings, PDF

Case drawings, PDF - blank lid

Case drawings, PDF - GPIO lid

Case Drawings, PDF - camera lid

Edit this on GitHub

All Raspberry Pi products have undergone extensive compliance testing. For more
information see the Product Information Portal.

The PCBs used in Raspberry Pi devices adhere to UL94-V0.

NOTE

This applies to the PCBs only.

The Compliance Support programme is designed to eliminate the burden of navigating
compliance issues and make it easier for companies to bring new products to consumers.
It provides access to the same test engineers who worked on our Raspberry Pis during
their compliance testing, connecting the user to a dedicated team at UL who assess and
test the user’s product, facilitated by their in-depth knowledge of Raspberry Pi.

Find out more about the Raspberry Pi Compliance Support Programme.

The Powered by Raspberry Pi program provides a process for companies wanting to use a
form of the Raspberry Pi logo, and covers products with Raspberry Pi computers or silicon
inside, and services provided by a Raspberry Pi. If you wish to start the process to apply
you can do so online.

Our list of Approved Design Partners provides a set of consultancies which we work closely
with and support so they can provide paid-for design services across hardware, software,
and mechanical Qelds.

Raspberry Pi Zero W

Raspberry Pi Zero

Product compliance and safety

Flammability rating

Raspberry Pi Compliance Support

Powered by Raspberry Pi

Approved Design Partners

https://datasheets.raspberrypi.com/rpizero/raspberry-pi-zero-w-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpizero/raspberry-pi-zero-w-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/rpizero/raspberry-pi-zero-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpizero/raspberry-pi-zero-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/case/raspberry-pi-zero-case-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/case/raspberry-pi-zero-case-with-gpio-mechanical-drawing.pdf
https://datasheets.raspberrypi.com/case/raspberry-pi-zero-case-with-camera-mechanical-drawing.pdf
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/raspberry-pi-compliance.adoc
https://pip.raspberrypi.com/
https://www.ul-certification.com/
https://www.raspberrypi.com/for-industry/integrator-programme/
https://www.raspberrypi.com/trademark-rules/powered-raspberry-pi/
https://www.raspberrypi.com/for-industry/design-partners/

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 12 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Edit this on GitHub

All Raspberry Pi models perform a degree of thermal management to avoid overheating
under heavy load. The SoCs have an internal temperature sensor, which software on the
GPU polls to ensure that temperatures do not exceed a limit which we deQne as 85°C on all
models. It is possible to set this to a lower value, but not to a higher one. As the device
approaches the limit, various frequencies and sometimes voltages used on the chip (Arm,
GPU) are reduced. This reduces the amount of heat generated, keeping the temperature
under control.

When the core temperature is between 80°C and 85°C, the Arm cores will be progressively
throttled back. If the temperature reaches 85°C, both the Arm cores and the GPU will be
throttled back.

For Raspberry Pi 3 Model B+, the PCB technology has been changed to provide better heat
dissipation and increased thermal mass. In addition, a soft temperature limit has been
introduced, with the goal of maximising the time for which a device can "sprint" before
reaching the hard limit at 85°C. When the soft limit is reached, the clock speed is reduced
from 1.4GHz to 1.2GHz, and the operating voltage is reduced slightly. This reduces the rate
of temperature increase: we trade a short period at 1.4GHz for a longer period at 1.2GHz.
By default, the soft limit is 60°C, and this can be changed via the temp_soft_limit setting
in conQg.txt.

The Raspberry Pi 4 Model B continues with the same PCB technology as the Raspberry Pi 3
Model B+, to help dissipate excess heat. There is currently no soft limit deQned.

NOTE

Discussion of DVFS applies to 4-series devices only (Raspberry Pi 4, Compute Module
4, and Pi 400).

Raspberry Pi 4 devices implement dynamic voltage and frequency scaling (DVFS). This
technique allows 4-series devices to run at lower temperatures whilst still providing the
same performance.

Various clocks (e.g. Arm, Core, V3D, ISP, H264, HEVC) inside the SoC are monitored by the
Qrmware, and whenever they are not running at full speed, the voltage supplied to the
particular part of the chip driven by the clock is reduced relative to the reduction from full
speed. In effect, only enough voltage is supplied to keep the block running correctly at the
speciQc speed at which it is running. This can result in signiQcant reductions in power used
by the SoC, and therefore in the overall heat being produced.

Due to possible system stability problems involved with running an undervoltage, especially
when using undervoltaged Qxed clock peripherals (eg. PCIe), three DVFS modes are
available and can be conQgured in /boot/firmware/config.txt with the below properties.
Most systems should use dvfs=3, headless systems may beneQt from a small power
reduction with dvfs=1 at the risk of PCIe stability issues.

property=value Description

dvfs=1 allow undervoltage

dvfs=2]xed voltage for default operating frequencies

dvfs=3 scale voltage up on demand for over clocking (default). If
over_voltage is speci]ed in config.txt then dynamic voltage
scaling is disabled causing the system to revert to dvfs=2.

NOTE

This setting has been removed on 5-series devices and is effectively always mode 3.

In addition, a more stepped CPU governor is also used to produce Qner-grained control of
ARM core frequencies, which means the DVFS is more effective. The steps are now
1500MHz, 1000MHz, 750MHz, and 600MHz. These steps can also help when the SoC is

Frequency management and thermal control

Use DVFS

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/frequency-management.adoc
https://www.raspberrypi.com/documentation/computers/config_txt.html#overclocking-options
https://www.raspberrypi.com/documentation/computers/config_txt.html#what-is-config-txt

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 13 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

being throttled, and mean that throttling all the way back to 600MHz is much less likely,
giving an overall increase in fully loaded performance.

The default CPU governor is ondemand. The governor can be manually changed with the
cpufreq-set command (from the cpufrequtils package) to reduce idle power
consumption:

Due to the architecture of the SoCs used on Raspberry Pi devices, and the use of the
upstream temperature monitoring code in the Raspberry Pi OS distribution, Linux-based
temperature measurements can be inaccurate. However, the vcgencmd command provides
an accurate and instantaneous reading of the current SoC temperature, as it
communicates with the GPU directly:

Thanks to built-in throttling, heatsinks are not necessary to prevent overheating damage to
the SoC. However, a heatsink or small fan can reduce thermal throttling and improve
performance. Mount the Raspberry Pi vertically for the best airGow and thus slightly
improved heat dissipation.

To ensure the best performance for your Raspberry Pi, use an active cooling solution such
as a fan. Raspberry Pi Qrmware manages fan speeds for all oTcial fans.

For Raspberry Pi 4, add the Raspberry Pi 4 Case Fan to the lid of the Raspberry Pi 4 case.

For Raspberry Pi 5, use one of the oTcial fan options:

Active Cooler

Case for Raspberry Pi 5

Both of the Raspberry Pi 5 fan options plug into the four-pin JST-SH PWM fan connector
located in the upper right of the board between the 40-pin GPIO header and the USB 2
ports. The fan connector pulls from the same current limit as USB peripherals. We
recommend the Active Cooler case for overclockers, since it provides better cooling
performance.

As the temperature of the Raspberry Pi 5 increases, the fan reacts in the following way:

below 50°C, the fan does not spin at all (0% speed)

at 50°C, the fan turns on at a low speed (30% speed)

at 60°C, the fan speed increases to a medium speed (50% speed)

at 67.5°C, the fan speed increases to a high speed (70% speed)

at 75°C the fan increases to full speed (100% speed)

Temperature decreases use the same mapping with a 5°C hysteresis; fan speed decreases
when the temperature drops to 5°C below each of the above thresholds.

$ sudo apt install cpufrequtils
$ sudo cpufreq-set -g powersave

Measure temperatures

$ vcgencmd measure_temp

Add heat sinks

Fan cases

Raspberry Pi 4 fan

Raspberry Pi 5 fans

https://www.raspberrypi.com/products/raspberry-pi-4-case-fan/
https://www.raspberrypi.com/products/active-cooler/
https://www.raspberrypi.com/products/raspberry-pi-5-case/

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 14 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

NOTE

The temperature, hysteresis and speed Qgures given above can be adjusted by using
the various fan_tempN, fan_tempN_hyst and fan_tempN_speed dtoverlay settings
(where N is 0, 1, 2 or 3). See the overlays README for full details. For example, adding
dtparam=fan_temp0=55000 to /boot/firmware/config.txt will cause the fan to
remain off until the Raspberry Pi 5’s temperature reaches 55°C.

At boot the fan is turned on, and the tachometer input is checked to see if the fan is
spinning. If it is, then the cooling_fan device tree overlay is enabled. This overlay is in
bcm2712-rpi-5-b.dtb by default, but with status=disabled.

The Raspberry Pi 5 fan connector is a 1mm pitch JST-SH socket containing the following
four pins:

Pin Function Wire colour

1 +5V Red

2 PWM Blue

3 GND Black

4 Tach Yellow

Edit this on GitHub

The following Raspberry Pi models use an EEPROM to boot the system:

Flagship models since Raspberry Pi 4B

Compute Module models since CM4 (including CM4S)

Keyboard models since Pi 400

All other models of Raspberry Pi computer use the bootcode.bin Qle located in the boot
Qlesystem.

NOTE

You can Qnd the scripts and pre-compiled binaries used to create rpi-eeprom in the
rpi-eeprom GitHub repository.

If an error occurs during boot, then an error code will be displayed via the green LED. Newer
versions of the bootloader will display a diagnostic message on all HDMI displays.

There are multiple ways to update the bootloader of your Raspberry Pi.

Raspberry Pi OS automatically updates the bootloader for important bug Qxes. To manually
update the bootloader or change the boot order, use raspi-conQg.

NOTE

Compute Module 4 and Compute Module 4S do not support automatic bootloader
updates because the bootrom cannot load the recovery.bin Qle from eMMC. The
recommended update mechanism is rpiboot or via flashrom - see rpi-eeprom-
update -h for more information.

Raspberry Pi Imager provides a GUI for updating the bootloader and selecting the boot

Raspberry Pi 5 fan connector pinout

Raspberry Pi boot EEPROM

Diagnostics

Update the bootloader

Flagship models since Raspberry Pi 4B; Compute Modules since CM5; Keyboard
models since Pi 400

Use Raspberry Pi Imager to update the bootloader

https://github.com/raspberrypi/linux/blob/rpi-6.12.y/arch/arm/boot/dts/overlays/README
https://github.com/raspberrypi/rpi-eeprom/
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/boot-eeprom.adoc
https://www.raspberrypi.com/documentation/computers/configuration.html#led-warning-flash-codes
https://www.raspberrypi.com/documentation/computers/configuration.html#raspi-config

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 15 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

mode.

1. Download Raspberry Pi Imager

2. Select a spare SD card (bootloader images overwrite the entire card)

3. Launch Raspberry Pi Imager

4. Select Choose OS

5. Select Misc utility images

[. Select Bootloader for your version of Raspberry Pi (Pi 400 is part of the 4 family)

7. Select a boot mode: SD (recommended), USB or Network

]. Select SD card and then Write

9. Click Yes to continue

10. Boot the Raspberry Pi with the new image and wait for at least ten seconds

11. When the green activity LED blinks with a steady pattern and the HDMI display shows a

https://www.raspberrypi.com/software/

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 16 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

green screen, you have successfully written the bootloader

12. Power off the Raspberry Pi and remove the SD card

To change the boot-mode or bootloader version from within Raspberry Pi OS, run raspi-
conQg.

1. Update Raspberry Pi OS to get the latest version of the rpi-eeprom package.

2. Run sudo raspi-config.

3. Select Advanced Options.

4. Select Bootloader Version.

5. Select Default for factory default settings or Latest for the latest bootloader release.

[. Reboot with sudo reboot.

The default version of the bootloader represents the latest factory default Qrmware
image. It updates to provide critical bug Qxes, hardware support and periodically after
features have been tested in the latest release. The latest bootloader updates more
often to include the latest Qxes and improvements.

Advanced users can switch to the latest bootloader to get the latest functionality.

First, ensure that your Raspberry Pi runs the latest software. Run the following command
to update:

Next, run the following command to open raspi-config:

Navigate to Advanced Options > Bootloader Version. Select Latest, then choose Yes
to conQrm. Select Finish and conQrm that you want to reboot.

If you run sudo rpi-eeprom-update, you should see that a more recent version of the
bootloader is available and it’s the latest release.

Now you can update your bootloader.

Reboot, then run sudo rpi-eeprom-update. You should now see that the CURRENT date
has updated to the latest version of the bootloader:

Use raspi-config to update the bootloader

Update the bootloader conKguration

$ sudo apt update && sudo apt full-upgrade

$ sudo raspi-config

*** UPDATE AVAILABLE ***
BOOTLOADER: update available
 CURRENT: Thu 18 Jan 13:59:23 UTC 2024 (1705586363)
 LATEST: Mon 22 Jan 10:41:21 UTC 2024 (1705920081)
 RELEASE: latest (/lib/firmware/raspberrypi/bootloader-2711/latest)
 Use raspi-config to change the release.

 VL805_FW: Using bootloader EEPROM
 VL805: up to date
 CURRENT: 000138c0
 LATEST: 000138c0

$ sudo rpi-eeprom-update -a
$ sudo reboot

BOOTLOADER: up to date
 CURRENT: Mon 22 Jan 10:41:21 UTC 2024 (1705920081)
 LATEST: Mon 22 Jan 10:41:21 UTC 2024 (1705920081)
 RELEASE: latest (/lib/firmware/raspberrypi/bootloader-2711/latest)
 Use raspi-config to change the release.

 VL805_FW: Using bootloader EEPROM
 VL805: up to date
 CURRENT: 000138c0
 LATEST: 000138c0

https://www.raspberrypi.com/documentation/computers/configuration.html#raspi-config
https://www.raspberrypi.com/documentation/computers/os.html#update-software

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 17 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

To view the conQguration used by the current running bootloader, run the following
command:

To read the conQguration from a bootloader image:

The following command loads the current bootloader conQguration into a text editor. When
the editor is closed, rpi-eeprom-config applies the updated conQguration to latest
available bootloader release and uses rpi-eeprom-update to schedule an update when
the system is rebooted:

If the updated conQguration is identical or empty, then no changes are made.

The editor is selected by the EDITOR environment variable.

The following command applies boot.conf to the latest available bootloader image and
uses rpi-eeprom-update to schedule an update when the system is rebooted.

The rpi-eeprom-update systemd service runs at startup and applies an update if a new
image is available, automatically migrating the current bootloader conQguration.

To disable automatic updates:

To re-enable automatic updates:

NOTE

If the FREEZE_VERSION bootloader conQg is set then the update service will skip any
automatic updates. This removes the need to individually disable the update service if
there are multiple operating systems installed, or when swapping SD cards.

Raspberry Pi OS uses the rpi-eeprom-update script to implement an automatic update
service. The script can also be run interactively or wrapped to create a custom bootloader
update service.

Reading the current bootloader version:

Check if an update is available:

Install the update:

Read the current bootloader conDguration

$ rpi-eeprom-config

Read the conDguration from an bootloader image

$ rpi-eeprom-config pieeprom.bin

Editing the current bootloader conDguration

$ sudo -E rpi-eeprom-config --edit
$ sudo reboot

Applying a saved conDguration

$ sudo rpi-eeprom-config --apply boot.conf
$ sudo reboot

Automatic updates

$ sudo systemctl mask rpi-eeprom-update

$ sudo systemctl unmask rpi-eeprom-update

rpi-eeprom-update

$ vcgencmd bootloader_version

$ sudo rpi-eeprom-update

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 18 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Cancel the pending update:

Installing a speciQc bootloader image:

The -d Gag instructs rpi-eeprom-update to use the conQguration in the speciQed image
Qle instead of automatically migrating the current conQguration.

Display the built-in documentation:

The Qrmware release status corresponds to a particular subdirectory of bootloader
Qrmware images (/lib/firmware/raspberrypi/bootloader/...), and can be changed
to select a different release stream.

default - Updated for new hardware support, critical bug Qxes and periodic update for
new features that have been tested via the latest release

latest - Updated when new features are available

Since the release status string is just a subdirectory name, it is possible to create your own
release streams e.g. a pinned release or custom network boot conQguration.

NOTE

You can change which release stream is to be used during an update by editing the
/etc/default/rpi-eeprom-update Qle and changing the FIRMWARE_RELEASE_STATUS
entry to the appropriate stream.

The following command replaces the bootloader conQguration in pieeprom.bin with
boot.conf and writes the new image to new.bin:

At power on, the ROM found on BCM2711 and BCM2712 looks for a Qle called
recovery.bin in the root directory of the boot partition on the SD card. If a valid
recovery.bin is found then the ROM executes this instead of the contents of the
EEPROM. This mechanism ensures that the bootloader Gash image can always be reset to
a valid image with factory default settings.

For more information, see EEPROM bootGow.

Filename Purpose

recovery.bin Bootloader recovery executable

pieeprom.upd Bootloader EEPROM image

pieeprom.bin Bootloader EEPROM image - same as
pieeprom.upd but changes recovery.bin
behaviour to not rename itself to
RECOVERY.000.

pieeprom.sig The sha256 checksum of bootloader image
(pieeprom.upd/pieeprom.bin)

$ sudo rpi-eeprom-update -a
$ sudo reboot

$ sudo rpi-eeprom-update -r

$ sudo rpi-eeprom-update -d -f pieeprom.bin

$ rpi-eeprom-update -h

Bootloader release status

Changing the bootloader release

Updating the bootloader conDguration in an bootloader image Dle

$ rpi-eeprom-config --config boot.conf --out new.bin pieeprom.bin

recovery.bin

Bootloader update Dles

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 19 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

vl805.bin The VLI805 USB]rmware EEPROM image -
Raspberry Pi 4B revision 1.3 and earlier only.

vl805.sig The sha256 checksum of vl805.bin

If the bootloader update image is called pieeprom.upd then recovery.bin is renamed
to recovery.000 once the update has completed, then the system is rebooted. Since
recovery.bin is no longer present the ROM loads the newly updated bootloader from
SPI Gash and the OS is booted as normal.

If the bootloader update image is called pieeprom.bin then recovery.bin will stop
after the update has completed. On success the HDMI output will be green and the
green activity LED is Gashed rapidly. If the update fails, the HDMI output will be red and
an error code will be displayed via the activity LED.

The .sig Qles contain the hexadecimal sha256 checksum of the corresponding image
Qle; additional Qelds may be added in the future.

The ROM found on BCM2711 and BCM2712 does not support loading recovery.bin
from USB mass storage or TFTP. Instead, newer versions of the bootloader support a
self-update mechanism where the bootloader is able to reGash the SPI Gash itself. See
ENABLE_SELF_UPDATE on the bootloader conQguration page.

The temporary EEPROM update Qles are automatically deleted by the rpi-eeprom-
update service at startup.

For more information about the rpi-eeprom-update conQguration Qle see rpi-eeprom-
update -h.

Both the bootloader and VLI EEPROMs support hardware write protection. See the
eeprom_write_protect option for more information about how to enable this when Gashing
the EEPROMs.

Edit this on GitHub

The bootloader on Raspberry Pi 4 or later Gagship models can display diagnostic
information at boot time on an HDMI display. To see this diagnostic information, power
down the Raspberry Pi, disconnect the boot media (typically an SD card or SSD), then
power back up. If your Raspberry Pi is connected to a display, you should see diagnostics
similar to the following:

This diagnostics page will also appear if the bootloader is unable to boot from any boot
media or network boot. This can happen if there is no bootable image on the boot media, if
the boot media is defective, or if network boot parameters are incorrect.

To reboot while displaying the diagnostics page, power cycle the device. You can

EEPROM write protect

Boot diagnostics

https://www.raspberrypi.com/documentation/computers/configuration.html#led-warning-flash-codes
https://www.raspberrypi.com/documentation/computers/config_txt.html#eeprom_write_protect
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/boot-eeprom-diagnostics.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 20 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

disconnect, then reconnect the power supply, or press and hold the power button, if your
device has one.

The top line describes the model of Raspberry Pi and its memory capacity. The QR code is
a link to the downloads page.

The diagnostic information is as follows:

Line Information

bootloader Bootloader git version - RO (if EEPROM is write protected) - software build
date

update-ts the timestamp corresponding to when the EEPROM con]guration was
updated; this timestamp is checked in self-update mode to avoid updating
to an old con]guration

secure-boot If secure-boot is enabled, displays the processor revision (B0/C0) and
signed-boot status jags; otherwise, this line is blank

board Board revision - serial number - Ethernet MAC address

boot mode (current boot mode name and number) order (the BOOT ORDER
con]guration) retry (retry count in the current boot mode) restart (number
of cycles through the list of boot modes)

SD The SD card detect status (detected/not detected).

part Master Boot Record primary partitions type:LBA

fw Filename for start.elf and fixup.dat if present (e.g. start4x.elf,
fixup4x.dat)

net Network boot: link status (up/down), client IP address (ip), subnet (sn),
default gateway (gw)

tftp Network boot: TFTP server IP address

display Indicates whether hotplug was detected (HPD=1) and if so whether the
EDID was read successfully (EDID=ok) for each HDMI output

To disable this diagnostics display, use the DISABLE_HDMI option in the bootloader
conQguration.

Edit this on GitHub

The Raspberry Pi has a number of different stages of booting. This document explains how
the boot modes work, and which ones are supported for Linux booting.

USB host and Ethernet boot can be performed by BCM2837-based Raspberry Pis - that is,
Raspberry Pi 2B version 1.2, Raspberry Pi 3B, and Raspberry Pi 3B+ (Raspberry Pi 3A+
cannot net boot since it does not have a built-in Ethernet interface). In addition, all
Raspberry Pi models prior to Raspberry Pi 4 can use a bootcode.bin-only method to
enable USB host boot.

NOTE

Since Raspberry Pi 4, Gagship devices do not use the bootcode.bin Qle. Instead, these
devices use a bootloader located in an on-board EEPROM chip. For more information,
see the documentation on EEPROM bootGow and SPI boot EEPROM.

Format an SD card as FAT32 and copy over the latest bootcode.bin. The SD card must be
present in the Raspberry Pi for it to boot. Once bootcode.bin is loaded from the SD card,
the Raspberry Pi continues booting using USB host mode.

This is useful for the Raspberry Pi 1, 2, and Zero models, which are based on the BCM2835
and BCM2836 chips, and in situations where a Raspberry Pi 3 fails to boot (the latest
bootcode.bin includes additional bugQxes for the Raspberry Pi 3B, compared to the boot
code burned into the BCM2837A0).

Raspberry Pi boot modes

Special bootcode.bin-only boot mode

https://www.raspberrypi.com/software/
https://www.raspberrypi.com/documentation/computers/configuration.html#part4
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/bootmodes.adoc
https://github.com/raspberrypi/firmware/blob/master/boot/bootcode.bin

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 21 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

If you have a problem with a mass storage device still not working, even with this
bootcode.bin, then add a new Qle called "timeout" to the SD card. This will extend to six
seconds the time for which it waits for the mass storage device to initialise.

NOTE

For boards released prior to Raspberry Pi 4.

For information on enabling UART with the EEPROM bootloader, see the bootloader
conQguration documentation.

It is possible to enable an early stage UART to debug booting issues (useful with the above
bootcode.bin only boot mode). To do this, make sure you’ve got a recent version of the
Qrmware (including bootcode.bin). To check if UART is supported in your current
Qrmware:

To enable UART from bootcode.bin:

Next, connect a suitable USB serial cable to your host computer (a Raspberry Pi will work,
although you may Qnd that the easiest path is to use a USB serial cable, since it’ll work out
the box without any pesky conQg.txt settings). Use the standard pins 6, 8 and 10 (GND,
GPIO14, GPIO15) on a Raspberry Pi or Compute Module.

Then use screen on Linux or macOS or putty on Windows to connect to the serial.

Set up your serial to receive at 115200-8-N-1, and then boot your Raspberry Pi. You should
get an immediate serial output from the device as bootcode.bin runs.

Edit this on GitHub

There are two separate boot modes for USB:

USB device boot

USB host boot

The Qrmware chooses between the two modes at boot time based on the OTP bits. Two
bits control USB boot. The Qrst enables USB device boot and is enabled by default; the
second enables USB host boot.

If the USB host boot mode bit is set, the processor reads the OTGID pin to decide whether
to boot as a host (driven to zero as on any Raspberry Pi Model B/B+) or as a device (left
Goating). The Raspberry Pi Zero has access to the OTGID pin through the USB connector;
the Compute Module has access to the OTGID pin on the edge connector.

Some other OTP bits allow certain GPIO pins to select the boot modes.

NOTE

USB device boot is available on the Compute Module series, Zero series, and Model A
variants of the Gagship series.

When this boot mode is activated (usually after a failure to boot from the SD card), the
Raspberry Pi puts its USB port into device mode and awaits a USB reset from the host.
Example code showing how the host needs to talk to the Raspberry Pi can be found on
Github.

The host Qrst sends a structure to the device down control endpoint 0. This contains the
size and signature for the boot (security is not enabled, so no signature is required).

bootcode.bin UART Enable

$ strings bootcode.bin | grep BOOT_UART

$ sed -i -e "s/BOOT_UART=0/BOOT_UART=1/" bootcode.bin

USB boot modes

USB device boot mode

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/boot-usb.adoc
https://github.com/raspberrypi/usbboot

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 22 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Secondly, code is transmitted down endpoint 1 (bootcode.bin). Finally, the device will
reply with one of the following codes:

0 - Success

0x80 - Failure

NOTE

Host boot is available on the Compute Module series since Compute Module 3, Zero
series since Zero 2 W, Raspberry Pi 2B (version 1.2), Raspberry Pi 3B, and all Gagship
series devices since Raspberry Pi 3B+. Raspberry Pi 3A+ supports mass storage boot,
but not network boot.

USB host boot mode uses the following logic:

1. Enable the USB port and wait for D+ line to be pulled high indicating a USB 2.0 device
(we only support USB2.0)

2. If the device is a hub:

a. Enable power to all downstream ports of the hub

b. For each port, loop for a maximum of two seconds (or Qve seconds if
program_usb_boot_timeout=1 has been set)

i. Release from reset and wait for D+ to be driven high to indicate that a device is
connected

ii. If a device is detected:

A. Send "Get Device Descriptor"

I. If VID == SMSC && PID == 9500

1. Add device to Ethernet device list

B. If the class interface is mass storage class

I. Add device to mass storage device list

3. Else

a. Enumerate single device

4. Go through mass storage device list

a. Boot from mass storage device

5. Go through Ethernet device list

a. Boot from Ethernet

On Raspberry Pi 3B, 3A+, and 3B+, host boot is disabled by default. To enable USB host
boot, add a line containing program_usb_boot_mode=1 to the end of
/boot/firmware/config.txt.

WARNING

Any change you make to the OTP is permanent and cannot be undone.

On Raspberry Pi 3A+, setting the OTP bit to enable USB host boot mode will permanently
prevent that Raspberry Pi from booting in USB device mode.

Edit this on GitHub

USB host boot mode

USB mass storage boot

https://www.raspberrypi.com/documentation/computers/config_txt.html#what-is-config-txt
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/boot-msd.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 23 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

NOTE

Available on the Compute Module series since Compute Module 3, Zero series since
Zero 2 W, and all Gagship series devices since Raspberry Pi 2B (version 1.2).

USB mass storage boot enables you to boot your Raspberry Pi from a USB mass storage
device such as a Gash drive or USB disk. When attaching USB devices, particularly hard
disks and SSDs, be mindful of their power requirements. Attaching more than one disk
typically requires additional external power from either a powered disk enclosure or a
powered USB hub.

NOTE

Models prior to Raspberry Pi 4B have known issues which prevent booting with some
USB devices.

Raspberry Pi 4 and newer Gagship series devices and Compute module devices since
Compute Module 4 and 4S support USB boot by default, as long as you specify USB boot in
the BOOT_ORDER conQguration.

NOTE

Early editions of Raspberry Pi 4 may require a bootloader update to boot from USB.

NOTE

Early editions of Compute Module 4 may require a bootloader update to boot from USB.

The Raspberry Pi 3B+ supports USB mass storage boot out of the box.

On Raspberry Pi 2B v1.2, 3A+, 3B, Zero 2 W, and Compute Module 3 and 3+, you must Qrst
enable USB host boot mode. This allows USB mass storage boot and network boot.

NOTE

Raspberry Pi 3A+ and Zero 2 W do not support network boot.

To enable USB host boot mode on these devices, set the USB host bit in OTP (one-time
programmable) memory. To set the bit, boot from an SD card where
/boot/firmware/config.txt contains the line program_usb_boot_mode=1. Once you set
the bit, you can boot from USB without the SD card.

WARNING

Any change you make to OTP (one-time programmable) memory is permanent and cannot
be undone.

On Raspberry Pi 3A+, setting the OTP bit to enable USB host boot mode will permanently
prevent that Raspberry Pi from booting in USB device mode.

Use any SD card Gashed with Raspberry Pi OS to program the OTP bit.

To enable USB host boot mode, add the following line to config.txt:

Then, use sudo reboot to reboot your Raspberry Pi. To check that the OTP has been
programmed correctly, run the following command:

Devices with an EEPROM bootloader

Raspberry Pi 3B+

Raspberry Pi 2B, 3A+, 3B, CM3, CM3+, Zero 2 W

Enable USB host boot mode with OTP

program_usb_boot_mode=1

https://www.raspberrypi.com/documentation/computers/compute-module.html#update-the-compute-module-bootloader
https://www.raspberrypi.com/documentation/computers/config_txt.html#what-is-config-txt

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 24 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

If the output reads 0x3020000a, the OTP has been successfully programmed. If you see
different output, try the programming procedure again. Make sure there is no blank line at
the end of config.txt.

You can now boot from a USB mass storage device in the same way as booting from an
SD card. See the following section for further information.

The procedure is the same as for SD cards - Gash the USB storage device with the
operating system image.

After preparing the storage device, connect the drive and power up the Raspberry Pi, being
aware of the extra USB power requirements of the external drive.

After Qve to ten seconds, the Raspberry Pi should begin booting and show the rainbow
splash screen on an attached display. Make sure that you do not have an SD card inserted
in the Raspberry Pi, since if you do, it will boot from that Qrst.

See the boot modes documentation for the boot sequence and alternative boot modes
(network, USB device, GPIO or SD boot).

The default timeout for checking bootable USB devices is two seconds. Some Gash
drives and hard disks power up too slowly. It is possible to extend this timeout to Qve
seconds (add a new Qle timeout to the SD card), but note that some devices take even
longer to respond.

Some Gash drives have a very speciQc protocol requirement that is not handled by the
bootcode and may thus be incompatible.

On Raspberry Pi 2B v1.2, 3A+, 3B and 3B+, if you are unable to use a particular USB device
to boot your Raspberry Pi, you can instead use bootcode.bin-only boot mode. The
Raspberry Pi will still boot from the SD card, but only reads bootcode.bin from the SD
card; the rest of your operating system lives on the USB device.

Before booting from a USB mass storage device, verify that the device works correctly
under Linux. Boot using an SD card and plug in the USB mass storage device. This should
appear as a removable drive. This is especially important with USB SATA adapters, which
may be supported by the bootloader in mass storage mode, but fail if Linux selects USB
Attached SCSI-UAS mode.

Hard disk drives (HDDs) typically require a powered USB hub. Even if everything appears to
work, you may encounter intermittent failures without a powered USB hub.

When searching for a bootable partition, the bootloader scans all USB mass storage
devices in parallel and selects the Qrst to respond. If the boot partition does not contain a
suitable start.elf Qle, the bootloader attempts the next available device. There is no
method for specifying the boot device according to the USB topology; this would slow
down boot and adds unnecessary conQguration complexity.

NOTE

Use config.txt Qle conditional Qlters to select alternate Qrmware in complex device
conQgurations.

$ vcgencmd otp_dump | grep 17:
17:3020000a

Boot from USB mass storage

Known issues

Special bootcode.bin-only boot mode

Hardware compatibility

Multiple bootable drives

Network booting

https://www.raspberrypi.com/documentation/computers/config_txt.html#conditional-filters
https://www.raspberrypi.com/documentation/computers/getting-started.html#installing-the-operating-system
https://en.wikipedia.org/wiki/USB_Attached_SCSI

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 25 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Edit this on GitHub

This section describes how network booting works on Raspberry Pi 3B, 3B+ and 2B v1.2.

On Pi 4 and Pi 5, network booting is implemented in the second stage bootloader in the
EEPROM. For more information, see Raspberry Pi bootloader conQguration.

We also have a tutorial about setting up a network boot system.

Network booting works only for the wired adapter built into the above models of Raspberry
Pi. Booting over wireless LAN is not supported, nor is booting from any other wired network
device.

To network boot, the boot ROM does the following:

Initialise on-board Ethernet device (Microchip LAN9500 or LAN7500)

Send DHCP request (with Vendor Class identiQer DHCP option 60 set to
PXEClient:Arch:00000:UNDI:002001)

Receive DHCP reply

(optional) Receive DHCP proxy reply

ARP to tftpboot server

ARP reply includes tftpboot server ethernet address

TFTP RRQ bootcode.bin

File not found: Server replies with TFTP error response with textual error message

File exists: Server will reply with the Qrst block (512 bytes) of data for the Qle with a
block number in the header

Raspberry Pi replies with TFTP ACK packet containing the block number, and
repeats until the last block which is not 512 bytes

TFTP RRQ bootsig.bin

This will normally result in an error file not found. This is to be expected, and
TFTP boot servers should be able to handle it.

From this point the bootcode.bin code continues to load the system. The Qrst Qle it will try
to access is <serial_number>/start.elf. If this does not result in an error then any
other Qles to be read will be prepended with the serial_number. This is useful because it
enables you to create separate directories with separate start.elf / kernels for your
Raspberry Pis.

To get the serial number for the device you can either try this boot mode and see what Qle
is accessed using tcpdump / wireshark, or you can run a standard Raspberry Pi OS SD card
and cat /proc/cpuinfo.

If you put all your Qles into the root of your TFTP directory then all following Qles will be
accessed from there.

The Qrst thing to check is that the OTP bit is correctly programmed. To do this, you need to
add program_usb_boot_mode=1 to config.txt and reboot (with a standard SD card that
boots correctly into Raspberry Pi OS). Once you’ve done this, you should be able to do:

If row 17 contains 3020000a then the OTP is correctly programmed. You should now be
able to remove the SD card, plug in Ethernet, and then the Ethernet LEDs should light up
around 5 seconds after the Raspberry Pi powers up.

To capture the Ethernet packets on the server, use tcpdump on the tftpboot server (or
DHCP server if they are different). You will need to capture the packets there otherwise you

Network boot Tow

Debugging network boot mode

$ vcgencmd otp_dump | grep 17:

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/boot-net.adoc
https://www.raspberrypi.com/documentation/computers/remote-access.html#network-boot-your-raspberry-pi

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 26 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

will not be able to see packets that get sent directly because network switches are not
hubs!

This will write everything from eth0 to a Qle named dump.pcap. You can then post-process
or upload the packets to cloudshark for communication.

As a minimum you should see a DHCP request and reply which looks like the following:

Vendor-Option Option 43 contains the important part of the reply. This must contain the
string "Raspberry Pi Boot". Due to a bug in the boot ROM, you may need to add three
spaces to the end of the string.

When the Vendor Option is correctly speciQed, you’ll see a subsequent TFTP RRQ packet
being sent. RRQs can be replied to by either the Qrst block of data or an error saying Qle not
found. In a couple of cases they even receive the Qrst packet and then the transmission is
aborted by the Raspberry Pi (this happens when checking whether a Qle exists). The
example below is just three packets: the original read request, the Qrst data block (which is
always 516 bytes containing a header and 512 bytes of data, although the last block is
always less than 512 bytes and may be zero length), and the third packet (the ACK which
contains a frame number to match the frame number in the data block).

$ sudo tcpdump -i eth0 -w dump.pcap

DHCP request / reply

6:44:38.717115 IP (tos 0x0, ttl 128, id 0, offset 0, flags [none], proto
UDP (17), length 348)
 0.0.0.0.68 > 255.255.255.255.67: [no cksum] BOOTP/DHCP, Request from
b8:27:eb:28:f6:6d, length 320, xid 0x26f30339, Flags [none] (0x0000)

 Client-Ethernet-Address b8:27:eb:28:f6:6d
 Vendor-rfc1048 Extensions
 Magic Cookie 0x63825363
 DHCP-Message Option 53, length 1: Discover
 Parameter-Request Option 55, length 12:
 Vendor-Option, Vendor-Class, BF, Option 128
 Option 129, Option 130, Option 131, Option 132
 Option 133, Option 134, Option 135, TFTP
 ARCH Option 93, length 2: 0
 NDI Option 94, length 3: 1.2.1
 GUID Option 97, length 17: 0.68.68.68.68.68.68.68.68.68.68.6

8.68.68.68.68.68
 Vendor-Class Option 60, length 32: "PXEClient:Arch:00000:UND

I:002001"
 END Option 255, length 0

16:44:41.224619 IP (tos 0x0, ttl 64, id 57713, offset 0, flags [none], p
roto UDP (17), length 372)
 192.168.1.1.67 > 192.168.1.139.68: [udp sum ok] BOOTP/DHCP, Reply, l
ength 344, xid 0x26f30339, Flags [none] (0x0000)

 Your-IP 192.168.1.139
 Server-IP 192.168.1.1
 Client-Ethernet-Address b8:27:eb:28:f6:6d
 Vendor-rfc1048 Extensions
 Magic Cookie 0x63825363
 DHCP-Message Option 53, length 1: Offer
 Server-ID Option 54, length 4: 192.168.1.1
 Lease-Time Option 51, length 4: 43200
 RN Option 58, length 4: 21600
 RB Option 59, length 4: 37800
 Subnet-Mask Option 1, length 4: 255.255.255.0
 BR Option 28, length 4: 192.168.1.255
 Vendor-Class Option 60, length 9: "PXEClient"
 GUID Option 97, length 17: 0.68.68.68.68.68.68.68.68.68.68.6

8.68.68.68.68.68
 Vendor-Option Option 43, length 32: 6.1.3.10.4.0.80.88.69.9.

20.0.0.17.82.97.115.112.98.101.114.114.121.32.80.105.32.66.111.111.116.2
55

 END Option 255, length 0

TFTP Dle read

16:44:41.224964 IP (tos 0x0, ttl 128, id 0, offset 0, flags [none], prot
o UDP (17), length 49)
 192.168.1.139.49152 > 192.168.1.1.69: [no cksum] 21 RRQ "bootcode.b
in" octet
16:44:41.227223 IP (tos 0x0, ttl 64, id 57714, offset 0, flags [none], p
roto UDP (17), length 544)
 192.168.1.1.55985 > 192.168.1.139.49152: [udp sum ok] UDP, length 51
6
16:44:41.227418 IP (tos 0x0, ttl 128, id 0, offset 0, flags [none], prot
o UDP (17), length 32)
 192.168.1.139.49152 > 192.168.1.1.55985: [no cksum] UDP, length 4

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 27 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

There are a number of known problems with the Ethernet boot mode. Since the
implementation of the boot modes is in the chip itself, there are no workarounds other than
to use an SD card with just the bootcode.bin Qle.

The Raspberry Pi will attempt a DHCP request Qve times with Qve seconds in between, for
a total period of 25 seconds. If the server is not available to respond in this time, then the
Raspberry Pi will drop into a low-power state. There is no workaround for this other than
bootcode.bin on an SD card.

Fixed in Raspberry Pi 3 Model B+ (BCM2837B0).

The DHCP check also checked if the hops value was 1, which it wouldn’t be with DHCP
relay.

Fixed in Raspberry Pi 3 Model B+.

The "Raspberry Pi Boot " string in the DHCP reply requires the extra three spaces due to an
error calculating the string length.

Fixed in Raspberry Pi 3 Model B+.

The DHCP UUID is set to be a constant value.

Fixed in Raspberry Pi 3 Model B+; the value is set to the 32-bit serial number.

The Raspberry Pi will only respond to ARP requests when it is in the initialisation phase;
once it has begun transferring data, it’ll fail to continue responding.

Fixed in Raspberry Pi 3 Model B+.

At boot time, Raspberry Pi broadcasts a DHCPDISCOVER packet. The DHCP server replies
with a DHCPOFFER packet. The Raspberry Pi then continues booting without doing a
DHCPREQUEST or waiting for DHCPACK. This may result in two separate devices being
offered the same IP address and using it without it being properly assigned to the client.

Different DHCP servers have different behaviours in this situation. dnsmasq (depending
upon settings) will hash the MAC address to determine the IP address, and ping the IP
address to make sure it isn’t already in use. This reduces the chances of this happening
because it requires a collision in the hash.

Edit this on GitHub

NOTE

GPIO boot mode is only available on the Raspberry Pi 3A+, 3B, 3B+, Compute Module 3
and 3+.

Earlier Raspberry Pis can be conQgured to allow the boot mode to be selected at power-on
using hardware attached to the GPIO connector. This is done by setting bits in the OTP
memory of the SoC. Once the bits are set, they permanently allocate Qve GPIOs to allow
this selection to be made. Once the OTP bits are set, they cannot be unset. You should
think carefully about enabling this, since those Qve GPIO lines will always control booting.

Known problems

DHCP requests time out after Dve tries

TFTP server on separate subnet not supported

DHCP relay broken

Raspberry Pi boot string

DHCP UUID constant

ARP check can fail to respond in the middle of TFTP transaction

DHCP request/reply/ack sequence not correctly implemented

GPIO boot mode

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/boot-gpio.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 28 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Although you can use the GPIOs for some other function once the Raspberry Pi has
booted, you must set them up so that they enable the desired boot modes when the
Raspberry Pi boots.

To enable GPIO boot mode, add the following line to the config.txt Qle:

Where n is the bank of GPIOs which you wish to use. Then reboot the Raspberry Pi once to
program the OTP with this setting. Bank 1 is GPIOs 22-26, Bank 2 is GPIOs 39-43. Unless
you have a Compute Module, you must use bank 1: the GPIOs in Bank 2 are only available
on the Compute Module. Because of the way the OTP bits are arranged, if you Qrst program
GPIO boot mode for Bank 1, you then have the option of selecting Bank 2 later. The reverse
is not true: once Bank 2 has been selected for GPIO boot mode, you cannot select Bank 1.

Once GPIO boot mode is enabled, the Raspberry Pi will no longer boot. You must pull up at
least one boot-mode GPIO pin in order for the Raspberry Pi to boot.

Bank 1 Bank 2 boot type

22 39 SD0

23 40 SD1

24 41 NAND (no Linux support at
present)

25 42 SPI (no Linux support at
present)

26 43 USB

USB in the table above selects both USB device boot mode and USB host boot mode. In
order to use a USB boot mode, it must be enabled in the OTP memory. For more
information, see USB device boot and USB host boot.

Bank 1 Bank 2 boot type

20 37 SD0

21 38 SD1

22 39 NAND (no Linux support at
present)

23 40 SPI (no Linux support at
present)

24 41 USB device

25 42 USB host - mass storage
device

26 43 USB host - Ethernet

NOTE

The various boot modes are attempted in the numerical order of the GPIO lines, i.e.
SD0, then SD1, then NAND and so on.

SD0 is the Broadcom SD card/MMC interface. When the boot ROM within the SoC runs, it
always connects SD0 to the built-in microSD card slot. On Compute Modules with an
eMMC device, SD0 is connected to that; on the Compute Module Lite SD0 is available on
the edge connector and connects to the microSD card slot in the CMIO carrier board. SD1
is the Arasan SD card/MMC interface which is also capable of SDIO. All Raspberry Pi

program_gpio_bootmode=n

Pin assignments

Raspberry Pi 3B and Compute Module 3

Later Raspberry Pi 3B (BCM2837B0 with the metal lid), Raspberry Pi 3A+, 3B+ and
Compute Module 3+

Boot Tow

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 29 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

models with built-in wireless LAN use SD1 to connect to the wireless chip via SDIO.

The default pull resistance on the GPIO lines is 50KΩ, as documented on page 102 of the
BCM2835 ARM peripherals datasheet. A pull resistance of 5KΩ is recommended to pull a
GPIO line up: this will allow the GPIO to function but not consume too much power.

Edit this on GitHub

NVMe (Non-Volatile Memory express) is a standard for external storage access over a PCIe
bus. You can connect NVMe drives via the PCIe slot on Compute Module 4 IO Board, the
M.2 slot on Compute Module 5 IO Board, and Raspberry Pi 5 using an M.2 HAT+. With
some additional conQguration, you can boot from an NVMe drive.

NVMe M.2 SSD

an adapter to convert from PCIe to an M.2 standard.

For Raspberry Pi 5, we recommend the M.2 HAT+, which converts from the
Raspberry Pi’s PCIe FFC slot to an M Key interface.

For the CM4, search for a "PCI-E 3.0 ×1 lane to M.2 NGFF M-Key SSD NVMe PCI
Express adapter card"

To check that your NVMe drive is connected correctly, boot your Raspberry Pi from another
storage device (such as an SD card) and run ls -l /dev/nvme*. Example output is shown
below.

First, ensure that your Raspberry Pi runs the latest software. Run the following command
to update:

Use the Raspberry Pi Software ConQguration Tool to update the bootloader:

Under Advanced Options > Boot Order, specify an option that includes NVMe. It will then
write these changes to the bootloader and return to the ConQg Tool, in which you can
Finish and reboot. Your Raspberry Pi will use the new boot order now.

For CM4, use rpiboot to update the bootloader. You can Qnd instructions for building
rpiboot and conQguring the IO board to switch the ROM to usbboot mode in the USB boot
GitHub repository.

For versions of CM4 with an eMMC, make sure you have set NVMe Qrst in the boot order.
Remember to add the NVMe boot mode 6 to BOOT_ORDER in recovery/boot.conf.

CM4 Lite automatically boots from NVMe when the SD card slot is empty.

The BOOT_ORDER setting in EEPROM conQguration controls boot behaviour. For NVMe boot,
use boot mode 6. For more information, see Raspberry Pi bootloader conQguration.

NVMe SSD boot

Prerequisites

Hardware

crw------- 1 root root 245, 0 Mar 9 14:58 /dev/nvme0
brw-rw---- 1 root disk 259, 0 Mar 9 14:58 /dev/nvme0n1

Software

$ sudo apt update && sudo apt full-upgrade

Edit the bootloader boot priority

$ sudo raspi-config

NVMe BOOT_ORDER

Example

https://datasheets.raspberrypi.com/bcm2835/bcm2835-peripherals.pdf
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/boot-nvme.adoc
https://www.raspberrypi.com/documentation/accessories/m2-hat-plus.html
https://github.com/raspberrypi/usbboot

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 30 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Below is an example of UART output when the bootloader detects the NVMe drive:

It will then Qnd a FAT partition and load start4.elf:

It will then load the kernel and boot the OS:

In Linux the SSD appears as /dev/nvme0 and the "namespace" as /dev/nvme0n1. There
will be two partitions /dev/nvme0n1p1 (FAT) and /dev/nvme0n1p2 (EXT4). Use lsblk to
check the partition assignments:

If the boot process fails, please Qle an issue on the rpi-eeprom GitHub repository, being
sure to attach a copy of the console and anything displayed on the screen during boot.

Edit this on GitHub

The network install feature uses HTTP over Ethernet to boot the Raspberry Pi into
embedded Raspberry Pi Imager.

In addition to network install, you can explicitly boot your device with Qles downloaded via
HTTP with boot-mode 7. You can still use this even if network install on boot is disabled.

You could, for example, add this to your BOOT_ORDER as a fall-back boot method, or put it
behind a GPIO conditional to initiate HTTP boot from your own server when a GPIO pin is
pulled low.

For example, if you added the following to your EEPROM conQg and GPIO 8 (which has a
default state of 1 or HIGH) were to be pulled low, the Qles
http://downloads.raspberrypi.org:80/net_install/boot.img and
http://downloads.raspberrypi.org:80/net_install/boot.sig would be
downloaded. If network install on boot were enabled, it would use the same URL. If GPIO 8
were not pulled low the behaviour would be unchanged.

boot.img and the boot.sig signature Qle is a ram disk containing a boot Qle system. For
more details, see boot_ramdisk.

HTTP in the BOOT_ORDER will be ignored if secure boot is enabled and HTTP_HOST is not
set.

To use HTTP boot, update to a bootloader released 10th March 2022 or later. HTTP boot

Boot mode: SD (01) order f64
Boot mode: USB-MSD (04) order f6
Boot mode: NVME (06) order f
VID 0x144d MN Samsung SSD 970 EVO Plus 250GB
NVME on

Read start4.elf bytes 2937840 hnd 0x00050287 hash ''

MESS:00:00:07.096119:0: brfs: File read: /mfs/sd/kernel8.img
MESS:00:00:07.098682:0: Loading 'kernel8.img' to 0x80000 size 0x1441a00
MESS:00:00:07.146055:0:[0.000000] Booting Linux on physical CPU 0x00
00000000 [0x410fd083]

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
nvme0n1 259:0 0 232.9G 0 disk
├─nvme0n1p1 259:1 0 256M 0 part /boot/firmware
└─nvme0n1p2 259:2 0 232.6G 0 part /

Troubleshooting

HTTP boot

[gpio8=0]
BOOT_ORDER=0xf7
HTTP_HOST=downloads.raspberrypi.org
NET_INSTALL_ENABLED=0

Requirements

https://github.com/raspberrypi/rpi-eeprom
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/boot-http.adoc
https://www.raspberrypi.com/documentation/computers/getting-started.html#raspberry-pi-imager
https://www.raspberrypi.com/documentation/computers/config_txt.html#boot_ramdisk

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 31 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

requires a wired Ethernet connection.

To use custom CA certiQcates, update to a bootloader released 5th April 2024 or later. Only
devices running the BCM2712 CPU support custom CA certiQcates.

All HTTP downloads must be signed. The bootloader includes a public key for the Qles on
the default host fw-download-alias1.raspberrypi.com. This key will be used to verify
the network install image, unless you set HTTP_HOST and include a public key in the
EEPROM. This allows you to host the Raspberry Pi network install images on your own
server.

WARNING

Using your own network install image will require you to sign the image and add your
public key to the EEPROM. If you then apply a public EEPROM update, your key will be
lost and will need to be re-added.

USBBOOT has all the tools needed to program public keys.

Use the following command to add your public key to the EEPROM. boot.conf contains
your modiQcations:

Use the following command to generate a signature for your EEPROM:

Then, use the following command to sign the network install image with your private key:

Finally, put boot.img and boot.sig on your web server to use your own signed network
install image.

For security, Network Install uses HTTPS to download OS images from the Raspberry Pi
website. This feature uses our own CA root included in the bootloader to verify the host.

You can add your own custom CA certiQcate to your device EEPROM to securely download
images from your own website. Use the --cacertder option of the rpi-eeprom-config
tool to add the DER-encoded certiQcate. You must place a hash of the certiQcate in the
EEPROM conQg settings to ensure that the certiQcate is not modiQed.

Run the following command to generate a DER-encoded certiQcate:

Then, run the following command to generate a SHA-256 hash of the certiQcate:

You should see output similar to the following:

Next, update boot.conf to include the hash of the certiQcate:

ConQgure the following settings in the [gpio8=0] section, replacing:

<your_website> with your website, e.g. yourserver.org

Keys

$ rpi-eeprom-config -c boot.conf -p mypubkey.pem -o pieeprom.upd pieepro
m.original.bin

$ rpi-eeprom-digest -i pieeprom.upd -o pieeprom.sig

$ rpi-eeprom-digest -i boot.img -o boot.sig -k myprivkey.pem

CertiKcates

$ openssl x509 -in your_ca_root_cert.pem -out cert.der -outform DER

$ sha256sum cert.der

701bd97f67b0f5483a9734e6e5cf72f9a123407b346088638f597878563193fc cert.d
er

$ sudo rpi-eeprom-config --edit

https://github.com/raspberrypi/usbboot/blob/master/Readme.md

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 32 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

<path_to_files> with the path to your OS image hosted on your website, e.g.
path/to/files

<hash> with the hash value you generated above, e.g.
701bd97f67b0f5483a9734e6e5cf72f9a123407b346088638f597878563193fc

When you specify a HTTP_CACERT_HASH, Network Install downloads the image using
HTTPS over port 443. Without a hash, Network install downloads the image using HTTP
over port 80.

Finally, use the following commands to load everything into EEPROM:

During network boot, your Raspberry Pi should use HTTPS instead of HTTP. To see the full
HTTPS URL resolved by Network Install for the download, check the boot output:

If secure boot is enabled, then the Raspberry Pi can only run code signed by the customer’s
private key. So if you want to use network install or HTTP boot mode with secure boot, you
must sign boot.img and generate boot.sig with your own key and host these Qles
somewhere for download. The public key in the EEPROM will be used to verify the image.

If secure boot is enabled and HTTP_HOST is not set, then network install and HTTP boot
will be disabled.

For more information about secure boot see USBBOOT.

Edit this on GitHub

IMPORTANT

The following boot sequence applies to the BCM2837 and BCM2837B0 based models
of Raspberry Pi only. On models prior to this, the Raspberry Pi will try SD card boot,
followed by USB device mode boot. For the Raspberry Pi 4 and Raspberry Pi 5 boot
sequence please see the EEPROM bootGow section.

USB boot defaults on Raspberry Pi 3 will depend on which version is being used. See this
page for information on enabling USB boot modes when not enabled by default.

When the BCM2837 boots, it uses two different sources to determine which boot modes to
enable. Firstly, the one-time-programmable (OTP) memory block is checked to see which
boot modes are enabled. If the GPIO boot mode setting is enabled, then the relevant GPIO
lines are tested to select which of the OTP-enabled boot modes should be attempted. Note
that GPIO boot mode can only be used to select boot modes that are already enabled in the
OTP. See GPIO boot mode for details on conQguring GPIO boot mode. GPIO boot mode is
disabled by default.

Next, the boot ROM checks each of the boot sources for a Qle called bootcode.bin; if it is
successful it will load the code into the local 128K cache and jump to it. The overall boot
mode process is as follows:

[all]
BOOT_UART=1
POWER_OFF_ON_HALT=0
BOOT_ORDER=0xf461

[gpio8=0]
BOOT_ORDER=0xf7
NET_INSTALL_ENABLED=0
HTTP_HOST=<your_website>
HTTP_PATH=<path_to_files>
HTTP_CACERT_HASH=<hash>

$ rpi-eeprom-config -c boot.conf -p mypubkey.pem -o pieeprom.bin --cacer
tder cert.der pieeprom.original.bin
$ rpi-eeprom-digest -k myprivkey.pem -i pieeprom.bin -o pieeprom.sig

Loading boot.img ...
HTTP: GET request for https://yourserver.org:443/path/to/files/boot.sig
HTTP: GET request for https://yourserver.org:443/path/to/files/boot.img

Secure boot

Boot sequence

https://github.com/raspberrypi/usbboot/blob/master/secure-boot-recovery/README.md
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/bootflow-legacy.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 33 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

BCM2837 boots

Read OTP to determine which boot modes to enable

If GPIO boot mode enabled, use GPIO boot mode to reQne list of enabled boot modes

If enabled: check primary SD for bootcode.bin on GPIO 48-53

Success - boot

Fail - timeout (Qve seconds)

If enabled: check secondary SD

Success - boot

Fail - timeout (Qve seconds)

If enabled: check NAND

If enabled: check SPI

If enabled: check USB

If OTG pin == 0

Enable USB, wait for valid USB 2.0 devices (two seconds)

Device found:

If device type == hub

Recurse for each port

If device type == (mass storage or LAN951x)

Store in list of devices

Recurse through each MSD

If bootcode.bin found boot

Recurse through each LAN951x

DHCP / TFTP boot

Else (device mode boot)

Enable device mode and wait for host PC to enumerate

We reply to PC with VID: 0a5c PID: 0x2763 (Raspberry Pi 1 or Raspberry Pi 2) or
0x2764 (Raspberry Pi 3)

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 34 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

NOTE

If there is no SD card inserted, the SD boot mode takes]ve seconds to fail. To reduce
this and fall back to USB more quickly, you can either insert an SD card with nothing on it
or use the GPIO bootmode OTP setting described above to only enable USB.
The default pull for the GPIOs is de]ned on page 102 of the ARM Peripherals datasheet.
If the value at boot time does not equal the default pull, then that boot mode is enabled.
USB enumeration is a means of enabling power to the downstream devices on a hub,
then waiting for the device to pull the D+ and D- lines to indicate if it is either USB 1 or
USB 2. This can take time: on some devices it can take up to three seconds for a hard
disk drive to spin up and start the enumeration process. Because this is the only way of
detecting that the hardware is attached, we have to wait for a minimum amount of time
(two seconds). If the device fails to respond after this maximum timeout, it is possible to
increase the timeout to]ve seconds using program_usb_boot_timeout=1 in
config.txt.
MSD boot takes precedence over Ethernet boot.
It is no longer necessary for the]rst partition to be the FAT partition, as the MSD boot will
continue to search for a FAT partition beyond the]rst one.
The boot ROM also now supports GUID partitioning and has been tested with hard drives
partitioned using Mac, Windows, and Linux.
The LAN951x is detected using the Vendor ID 0x0424 and Product ID 0xec00: this is
different to the standalone LAN9500 device, which has a product ID of 0x9500 or
0x9e00. To use the standalone LAN9500, an I2C EEPROM would need to be added to
change these IDs to match the LAN951x.

The primary SD card boot mode is, as standard, set to be GPIOs 49-53. It is possible to
boot from the secondary SD card on a second set of pins, i.e. to add a secondary SD card
to the GPIO pins. However, we have not yet enabled this ability.

NAND boot and SPI boot modes do work, although they do not yet have full GPU support.

The USB device boot mode is enabled by default at the time of manufacture, but the USB
host boot mode is only enabled with program_usb_boot_mode=1. Once enabled, the
processor will use the value of the OTGID pin on the processor to decide between the two
modes. On any Raspberry Pi Model B/B+, the OTGID pin is driven to 0 and therefore will
only boot via host mode once enabled (it is not possible to boot through device mode
because the LAN951x device is in the way).

The USB will boot as a USB device on the Raspberry Pi Zero or Compute Module if the
OTGID pin is left Goating (when plugged into a PC for example), so you can push the
bootcode.bin into the device. The usbboot code for doing this is available on GitHub.

Edit this on GitHub

Since Raspberry Pi 4, Raspberry Pi Gagship devices use an EEPROM bootloader. The main
difference between these and previous products is that the second-stage bootloader is
loaded from SPI Gash EEPROM instead of the bootcode.bin Qle used on previous
products.

The boot Gow for the ROM (Qrst stage) is as follows:

SoC powers up

Read OTP to determine if the nRPIBOOT GPIO is conQgured

If nRPIBOOT GPIO is high or OTP does NOT deQne nRPIBOOT GPIO

Check OTP to see if recovery.bin can be loaded from SD/EMMC

If SD recovery.bin is enabled then check primary SD/EMMC for recovery.bin

Success - run recovery.bin and update the SPI EEPROM

Fail - continue

EEPROM boot How

First stage bootloader

https://datasheets.raspberrypi.com/bcm2835/bcm2835-peripherals.pdf
https://github.com/raspberrypi/usbboot
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/bootflow-eeprom.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 35 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Check SPI EEPROM for second stage loader

Success - run second stage bootloader

Fail - continue

While True

Attempt to load recovery.bin from USB device boot

Success - run recovery.bin and update the SPI EEPROM or switch to USB mass
storage device mode

Fail - retry USB device boot

NOTE

recovery.bin is a minimal second stage program used to reGash the bootloader SPI
EEPROM image.

This section describes the high-level Gow of the second stage bootloader.

Please see the bootloader conQguration page for more information about each boot mode,
and the boot folder page for a description of the GPU Qrmware Qles loaded by this stage.

Initialise clocks and SDRAM

Read the EEPROM conQguration Qle

Check PM_RSTS register to determine if HALT is requested

Check POWER_OFF_ON_HALT and WAKE_ON_GPIO EEPROM conQguration settings

If POWER_OFF_ON_HALT is 1 and WAKE_ON_GPIO is 0 then

Use PMIC to power off system

Else if WAKE_ON_GPIO is 1

Enable fall-edge interrupts on GPIO3 to wake-up if GPIO3 is pulled low

Sleep

While True

Read the next boot-mode from the BOOT_ORDER parameter in the EEPROM conQg
Qle.

If boot-mode == RESTART

Jump back to the Qrst boot-mode in the BOOT_ORDER Qeld

Else if boot-mode == STOP

Display start.elf not found error pattern and wait forever.

Else if boot-mode == SD CARD

Attempt to load Qrmware from the SD card

Success - run the Qrmware

Failure - continue

Else if boot-mode == NETWORK then

Use DHCP protocol to request IP address

Load Qrmware from the DHCP or statically deQned TFTP server

If the Qrmware is not found or a timeout or network error occurs then continue

Else if boot-mode == USB-MSD or boot-mode == BCM-USB-MSD then

Second stage bootloader

https://www.raspberrypi.com/documentation/computers/compute-module.html#flash-compute-module-emmc
https://www.raspberrypi.com/documentation/computers/configuration.html#boot-folder-contents
https://www.raspberrypi.com/documentation/computers/configuration.html#led-warning-flash-codes

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 36 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

While USB discover has not timed out

Check for USB mass storage devices

If a new mass storage device is found then

For each drive (LUN)

Attempt to load Qrmware

Success - run the Qrmware

Failed - advance to next LUN

Else if boot-mode == NVME then

Scan PCIe for an NVMe device and if found

Attempt to load Qrmware from the NVMe device

Success - run the Qrmware

Failure - continue

Else if boot-mode == RPIBOOT then

Attempt to load Qrmware using USB device mode from the USB OTG port - see
USB boot. There is no timeout for RPIBOOT mode.

The power button is used to wake up from PMIC STANDBY or HALT instead of GPIO 3.

Instead of loading start.elf, the Qrmware loads the Linux kernel. Effectively, the
bootloader has an embedded version of start.elf.

USB boot is disabled by default when connected to a 3A power supply. Set
usb_max_current_enable=1 in /boot/firmware/config.txt to enable USB boot.
Alternatively, you can press the power button a single time on a failed USB boot to
temporarily enable usb_max_current_enable and continue booting. However, this
setting will not persist after a reboot if enabled by pressing the power button.

The bootloader may also be updated before the Qrmware is started if a pieeprom.upd Qle
is found. See the bootloader EEPROM page for more information about bootloader
updates.

The bootloader/Qrmware provide a one-shot Gag which, if set, is cleared but causes
tryboot.txt to be loaded instead of config.txt. This alternate conQg would specify the
pending OS update Qrmware, cmdline, kernel and os_preQx parameters. Since the Gag is
cleared before starting the Qrmware, a crash or reset will cause the original config.txt Qle
to be loaded on the next reboot.

To set the tryboot Gag, add tryboot after the partition number in the reboot command.
Normally, the partition number defaults to zero but it must be speciQed if extra arguments
are added. Always use quotes when passing arguments to reboot: it accepts only a single
argument:

All Raspberry Pi models support tryboot, however, on Raspberry Pi 4 Model B revision 1.0
and 1.1 the EEPROM must not be write protected. This is because older Raspberry Pi 4B
devices have to reset the power supply (losing the tryboot state), so this is stored inside the
EEPROM instead.

If secure-boot is enabled, then tryboot mode will cause tryboot.img to be loaded
instead of boot.img.

Differences on Raspberry Pi 5

Bootloader updates

Fail-safe OS updates (tryboot)

$ sudo reboot '0 tryboot'

https://github.com/raspberrypi/usbboot

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 37 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

If the tryboot_a_b property in autoboot.txt is set to 1 then config.txt is loaded instead
of tryboot.txt. This is because the tryboot switch has already been made at a higher
level (the partition), so it’s unnecessary to have a tryboot.txt Qle within alternate partition
itself.

The tryboot_a_b property is implicitly set to 1 when loading Qles from within a boot.img
ramdisk.

Edit this on GitHub

Before editing the bootloader conQguration, update your system to get the latest version of
the rpi-eeprom package.

To view the current EEPROM conQguration, run the following command:

To edit the current EEPROM conQguration and apply the updates to latest EEPROM release,
run the following command:

For more information about the EEPROM update process, see boot EEPROM.

This section describes all the conQguration items available in the bootloader. The syntax is
the same as conQg.txt but the properties are speciQc to the bootloader. Conditional Qlters
are also supported except for EDID.

If 1 then enable UART debug output on GPIO 14 and 15. ConQgure the receiving debug
terminal at 115200bps, 8 bits, no parity bits, 1 stop bit.

Default: 0

Flagship models since Raspberry Pi 5 only.

Changes the baud rate for the bootloader UART.

Supported values: 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600

Default: 115200

If 1 then sudo halt will run in a lower power mode until either GPIO3 or GLOBAL_EN are
shorted to ground.

This setting is not relevant on Flagship models since Raspberry Pi 5, Compute Modules
since CM5, and Keyboard models since Pi 500 because the dedicated power button may
always be used to wake from HALT or STANDBY.

Default: 1

If 1 and WAKE_ON_GPIO=0 then sudo halt will switch off all PMIC outputs. This is lowest
possible power state for halt but may cause problems with some HATs because 5V will still
be on. GLOBAL_EN must be shorted to ground to boot.

The dedicated power button on Pi 400 operates even if the processor is switched off. This

tryboot_a_b mode

Raspberry Pi bootloader conIguration

Edit the conKguration

$ rpi-eeprom-config

$ sudo -E rpi-eeprom-config --edit

ConKguration properties

BOOT_UART

UART_BAUD

WAKE_ON_GPIO

POWER_OFF_ON_HALT

https://www.raspberrypi.com/documentation/computers/config_txt.html#autoboot-txt
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/eeprom-bootloader.adoc
https://www.raspberrypi.com/documentation/computers/os.html#update-software
https://www.raspberrypi.com/documentation/computers/config_txt.html
https://www.raspberrypi.com/documentation/computers/config_txt.html#conditional-filters

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 38 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

behaviour is enabled by default, however, WAKE_ON_GPIO=2 may be set to use an external
GPIO power button instead of the dedicated power button.

On Flagship models since Raspberry Pi 5 and Keyboard models since Pi 500, this places
the PMIC in STANDBY mode where all outputs are switched off. There is no need to set
WAKE_ON_GPIO and pressing the dedicated power button boots the device.

Default: 1 on Compute Modules since CM5 and Keyboard models; otherwise 0

Flagship models since Raspberry Pi 5 only.

If this property and POWER_OFF_ON_HALT are both set to 1 then the bootloader will
immediately power-off and wait for the power to be pressed on the Qrst boot after the
power supply has been removed. This means that instead of booting immediately after
power-loss the system will wait for the power button to be pressed.

Default: 0

The BOOT_ORDER setting allows Gexible conQguration for the priority of different boot
modes. It is represented as a 32-bit unsigned integer where each nibble represents a boot-
mode. The boot modes are attempted in lowest signiQcant nibble to highest signiQcant
nibble order.

The BOOT_ORDER property deQnes the sequence for the different boot modes. It is read right
to left, and up to eight digits may be deQned.

Value Mode Description

0x0 SD CARD DETECT Try SD then wait for card-detect to indicate
that the card has changed. Deprecated now
that 0xf (RESTART) is available.

0x1 SD CARD SD card (or eMMC on Compute Module 4).

0x2 NETWORK Network boot - See Network boot server
tutorial.

0x3 RPIBOOT RPIBOOT - See usbboot.

0x4 USB-MSD USB mass storage boot - See USB mass
storage boot.

0x5 BCM-USB-MSD USB 2.0 boot from USB Type C socket (CM4:
USB type A socket on CM4IO board). Not
available on Raspberry Pi 5.

0x6 NVME CM4 and Pi 5 only: boot from an NVMe SSD
connected to the PCIe interface. See NVMe
boot for more details.

0x7 HTTP HTTP boot over ethernet. See HTTP boot for
more details.

0xe STOP Stop and display error pattern. A power cycle
is required to exit this state.

0xf RESTART Restart from the]rst boot-mode in the
BOOT_ORDER]eld i.e. loop.

RPIBOOT is intended for use with Compute Module 4 to load a custom debug image (e.g. a
Linux RAM-disk) instead of the normal boot. This should be the last boot option because it
does not currently support timeouts or retries.

BOOT_ORDER Description

0xf41 Try SD]rst, followed by USB-MSD then repeat (default if
BOOT_ORDER is empty)

WAIT_FOR_POWER_BUTTON

BOOT_ORDER

BOOT_ORDER ,elds

BOOT_ORDER examples

https://www.raspberrypi.com/documentation/computers/remote-access.html#network-boot-your-raspberry-pi
https://github.com/raspberrypi/usbboot

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 39 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

0xf14 Try USB]rst, followed by SD then repeat

0xf21 Try SD]rst, followed by NETWORK then repeat

0xf46 Try NVMe]rst, followed by USB-MSD then repeat

If the RESTART (0xf) boot-mode is encountered more than MAX_RESTARTS times then a
watchdog reset is triggered. This isn’t recommended for general use but may be useful for
test or remote systems where a full reset is needed to resolve issues with hardware or
network interfaces.

Default: -1 (inQnite)

The number of times that SD boot will be retried after failure before moving to the next
boot-mode deQned by BOOT_ORDER.

-1 means inQnite retries.

Default: 0

The SD_QUIRKS property provides a set of options to support device bringup and
workaround interoperability issues.

The Gags are implemented as a bit-Qeld. UndeQned bits are reserved for future use and
should be set to zero.

Value Behaviour

0x1 Disable SD High Speed modes. The card clock is limited to 12.5 MHz

Default: 0

The number of times that network boot will be retried after failure before moving to the
next boot-mode deQned by BOOT_ORDER.

-1 means inQnite retries.

Default: 0

The timeout in milliseconds for the entire DHCP sequence before failing the current
iteration.

Minimum: 5000

Default: 45000

The timeout in milliseconds before retrying DHCP DISCOVER or DHCP REQ.

Minimum: 500

Default: 4000

The timeout in milliseconds for an individual Qle download via TFTP.

Minimum: 5000

Default: 30000

MAX_RESTARTS

SD_BOOT_MAX_RETRIES

SD_QUIRKS

NET_BOOT_MAX_RETRIES

DHCP_TIMEOUT

DHCP_REQ_TIMEOUT

TFTP_FILE_TIMEOUT

TFTP_IP

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 40 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Optional dotted decimal ip address (e.g. 192.168.1.99) for the TFTP server which
overrides the server-ip from the DHCP request.

This may be useful on home networks because tftpd-hpa can be used instead of dnsmasq
where broadband router is the DHCP server.

Default: ""

In order to support unique TFTP boot directories for each Raspberry Pi, the bootloader
preQxes the Qlenames with a device-speciQc directory. If neither start4.elf nor start.elf are
found in the preQxed directory then the preQx is cleared.

On earlier models the serial number is used as the preQx, however on Raspberry Pi 4 and 5
the MAC address is no longer generated from the serial number, making it diTcult to
automatically create tftpboot directories on the server by inspecting DHCPDISCOVER
packets. To support this the TFTP_PREFIX may be customized to either be the MAC
address, a Qxed value or the serial number (default).

Value Description

0 Use the serial number e.g. 9ffefdef/

1 Use the string speci]ed by TFTP_PREFIX_STR

2 Use the MAC address e.g. dc-a6-32-01-36-
c2/

Default: 0

Specify the custom directory preQx string used when TFTP_PREFIX is set to 1. For
example:- TFTP_PREFIX_STR=tftp_test/

Default: ""

Max length: 32 characters

Overrides the PXE Option43 match string with a different string. It’s normally better to apply
customisations to the DHCP server than change the client behaviour, but this option is
provided in case that’s not possible.

Default: Raspberry Pi Boot

In earlier releases the client GUID (Option97) was just the serial number repeated four
times. By default, the new GUID format is the concatenation of the four-character code
(FourCC) (RPi4 0x34695052 for Raspberry Pi 4 or RPi5 0x35695052 for Raspberry Pi 5), the
board revision (e.g. 0x00c03111 or 0x00d04170) (4-bytes), the least signiQcant 4 bytes of
the mac address and the 4-byte serial number. This is intended to be unique but also
provides structured information to the DHCP server, allowing Raspberry Pi 4 and 5
computers to be identiQed without relying upon the Ethernet MAC OUID.

Specify DHCP_OPTION97=0 to revert the old behaviour or a non-zero hex-value to specify a
custom 4-byte preQx.

Default: 0x34695052

Overrides the Raspberry Pi Ethernet MAC address with the given value. e.g.
dc:a6:32:01:36:c2

Default: ""

Overrides the Raspberry Pi Ethernet MAC address with a value stored in the Customer OTP

TFTP_PREFIX

TFTP_PREFIX_STR

PXE_OPTION43

DHCP_OPTION97

MAC_ADDRESS

MAC_ADDRESS_OTP

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 41 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

registers.

For example, to use a MAC address stored in rows 0 and 1 of the Customer OTP.

The Qrst value (row 0 in the example) contains the OUI and the most signiQcant 8 bits of
the MAC address. The second value (row 1 in the example) stores the remaining 16-bits of
the MAC address. This is the same format as used for the Raspberry Pi MAC address
programmed at manufacture.

Any two customer rows may be selected and combined in either order.

The Customer OTP rows are OTP registers 36 to 43 in the vcgencmd otp_dump output so if
the Qrst two rows are programmed as follows then MAC_ADDRESS_OTP=0,1 would give a
MAC address of e4:5f:01:20:24:7e.

Default: ""

If TFTP_IP and the following options are set then DHCP is skipped and the static IP
conQguration is applied. If the TFTP server is on the same subnet as the client then
GATEWAY may be omitted.

The IP address of the client e.g. 192.168.0.32

Default: ""

The subnet address mask e.g. 255.255.255.0

Default: ""

The gateway address to use if the TFTP server is on a different subnet e.g. 192.168.0.1

Default: ""

The HDMI boot diagnostics display is disabled if DISABLE_HDMI=1. Other non-zero values
are reserved for future use.

Default: 0

Skip rendering of the HDMI diagnostics display for up to N seconds (default 5) unless a
fatal error occurs. The default behaviour is designed to avoid the bootloader diagnostics
screen from brieGy appearing during a normal SD/USB boot.

Default: 5

Enables the bootloader to update itself from a TFTP or USB mass storage device (MSD)
boot Qlesystem.

If self-update is enabled then the bootloader will look for the update Qles (.sig/.upd) in the
boot Qle system. If the update image differs from the current image then the update is
applied and system is reset. Otherwise, if the EEPROM images are byte-for-byte identical
then boot continues as normal.

MAC_ADDRESS_OTP=0,1

36:247e0000
37:e45f0120

Static IP address conDguration

CLIENT_IP

SUBNET

GATEWAY

DISABLE_HDMI

HDMI_DELAY

ENABLE_SELF_UPDATE

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 42 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Notes:

Bootloader releases prior to 2021 do not support self-update.

Prior to 2022, self-update was not enabled in SD boot. On a Raspberry Pi 4, the ROM can
already load recovery.bin from the SD card. On a CM4, neither self-update nor
recovery.bin have any effect and USB boot is required (see the Compute Module
EEPROM bootloader docs).

Starting in 2022 (beta and stable), self-update from an SD card is enabled.

For network boot make sure that the TFTP boot directory can be mounted via NFS and
that rpi-eeprom-update can write to it.

Default: 1

Previously this property was only checked by the rpi-eeprom-update script. However,
now that self-update is enabled the bootloader will also check this property. If set to 1, this
overrides ENABLE_SELF_UPDATE to stop automatic updates. To disable FREEZE_VERSION
you will have to use SD card boot with recovery.bin.

Custom EEPROM update scripts must also check this Gag.

Default: 0

If network install or HTTP boot is initiated, boot.img and boot.sig are downloaded from
this server.

Invalid host names will be ignored. They should only contain lower case alphanumeric
characters and - or .. If HTTP_HOST is set then HTTPS is disabled and plain HTTP used
instead. You can specify an IP address to avoid the need for a DNS lookup. Don`t include
the HTTP scheme or any forward slashes in the hostname.

Default: fw-download-alias1.raspberrypi.com

You can use this property to change the port used for network install and HTTP boot.
HTTPS is enabled when using the default host fw-download-alias1.raspberrypi.com. If
HTTP_HOST is changed then HTTPS is disabled and plain HTTP will be used instead.

When HTTPS is disabled, plain HTTP will still be used even if HTTP_PORT is changed to 443.

Default: 443 if HTTPS is enabled otherwise 80

The path used for network install and HTTP boot.

Case-sensitive. Use forward (Linux) slashes for the path separator. Leading and trailing
forward slashes are not required.

If HTTP_HOST is not set, HTTP_PATH is ignored and the URL will be https://fw-download-
alias1.raspberrypi.com:443/net_install/boot.img. If HTTP_HOST is set the URL will
be http://<HTTP_HOST>:<HTTP_PORT>/<HTTP_PATH>/boot.img

Default: net_install

The embedded Raspberry Pi Imager application is conQgured with a JSON Qle downloaded
at startup.

You can change the URL of the JSON Qle used by the embedded Raspberry Pi Imager
application to get it to offer your own images. You can test this with the standard
Raspberry Pi Imager application by passing the URL via the --repo argument.

Default: http://downloads.raspberrypi.org/os_list_imagingutility_v3.json

FREEZE_VERSION

HTTP_HOST

HTTP_PORT

HTTP_PATH

IMAGER_REPO_URL

https://www.raspberrypi.com/documentation/computers/compute-module.html#compute-module-eeprom-bootloader
https://github.com/raspberrypi/rpi-eeprom/blob/master/firmware-2711/release-notes.md#2022-02-04---network-install---beta
https://github.com/raspberrypi/rpi-eeprom/blob/master/firmware-2711/release-notes.md#2022-03-10---promote-the-2022-03-10-beta-release-to-lateststable
https://www.raspberrypi.com/software/

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 43 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

When network install is enabled, the bootloader displays the network install screen on boot
if it detects a keyboard.

To enable network install, add NET_INSTALL_ENABLED=1, or to disable network install add
NET_INSTALL_ENABLED=0.

This setting is ignored and network install is disabled if DISABLE_HDMI=1 is set.

In order to detect the keyboard, network install must initialise the USB controller and
enumerate devices. This increases boot time by approximately 1 second so it may be
advantageous to disable network install in some embedded applications.

Default: 1 on Flagship models since Raspberry Pi 4B and Keyboard models; 0 on Compute
Modules since CM4 (including CM4S).

When set to 1, displays the network install UI brieGy after a cold boot to make this feature
more obvious to new users. Overrides NET_INSTALL_ENABLED if the settings conGict.

The default bootloader images set this value to 1 in the bootloader conQg. To disable the
brief network install UI display, use the Advanced Options menu in raspi-config or
manually delete this line in rpi-eeprom-config:

Default: 0

If network install is enabled, the bootloader attempts to detect a keyboard and the SHIFT
key to initiate network install. You can change the length of this wait in milliseconds with
this property.

Setting this to 0 disables the keyboard wait, although network install can still be initiated if
no boot Qles are found and USB boot-mode 4 is in BOOT_ORDER.

NOTE

Testing suggests keyboard and SHIFT detection takes at least 750ms.

Default: 900

NETCONSOLE duplicates debug messages to the network interface. The IP addresses and
ports are deQned by the NETCONSOLE string.

NOTE

NETCONSOLE blocks until the Ethernet link is established or a timeout occurs. The
timeout value is DHCP_TIMEOUT although DHCP is not attempted unless network boot is
requested.

For more information, see the Netconsole documentation.

In order to simplify parsing, the bootloader requires every Qeld separator to be present. You
must specify the source IP address, but you can leave the following Qelds blank to use their
default values:

src_port - 6665

dev_name - "" (the device name is always ignored)

dst_port - 6666

NET_INSTALL_ENABLED

NET_INSTALL_AT_POWER_ON

$ sudo rpi-eeprom-config --edit

NET_INSTALL_KEYBOARD_WAIT

NETCONSOLE - advanced logging

Format

src_port@src_ip/dev_name,dst_port@dst_ip/dst_mac
E.g. 6665@169.254.1.1/,6666@/

https://wiki.archlinux.org/index.php/Netconsole

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 44 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

dst_ip - 255.255.255.255

dst_mac - 00:00:00:00:00

One way to view the data is to connect the test Raspberry Pi 4 to another Raspberry Pi
running WireShark and select udp.srcport == 6665 as a Qlter and select Analyze →
Follow → UDP stream to view as an ASCII log.

NETCONSOLE should not be enabled by default because it may cause network problems. It
can be enabled on demand via a GPIO Qlter:

Default: "" (not enabled)

Max length: 32 characters

The PARTITION option may be used to specify the boot partition number, if it has not
explicitly been set by the reboot command (e.g. sudo reboot N) or by
boot_partition=N in autoboot.txt. This could be used to boot from a rescue partition if
the user presses a button.

The latest Qrmware also allows high partition numbers (> 31) to be overriden. This allows a
custom setup of the system hardware watchdog to trigger a reboot with a special high
partition number (e.g. 62) which can be detected by the bootloader (using a conditional
Qlter) and remapped to a recovery partition.

Example:

Default: 0

This property is designed to improve the reliability of A/B boot schemes using
autoboot.txt by searching for bootable partitions if the speciQed partition does not
appear to be bootable. If PARTITION_WALK=1 and the requested partition is not bootable
and does not have a valid autoboot.txt then the bootloader will check each partition in
turn (up to 8 and wrapping to 0) to see if it is bootable (contains start4.elf on a Pi4, or
config.txt and a suitable device-tree on Pi 5 or newer).

During the "partition walk" autoboot.txt Qles are not processed to avoid cycling
dependencies. It is assumed that the requested boot partition has failed and the system is
attempting recovery.

Default: 0

Raspberry Pi 5 only.

If set, this property instructions the Qrmware to skip USB power-delivery negotiation and
assume that it is connected to a power supply with the given current rating. Typically, this
would either be set to 3000 or 5000 i.e. low or high-current capable power supply.

Default: ""

Enable debug if GPIO 7 is pulled low
[gpio7=0]
NETCONSOLE=6665@169.254.1.1/,6666@/

PARTITION

System watchdog fired - boot the rescue partition with additional opti
ons
Disable SD high speed mode and enable HDMI diagnostics immediately.
[partition=62]
PARTITION=2
HDMI_DELAY=0
SD_QUIRKS=1

Boot from partition 2 if GPIO 7 is pulled low
[gpio7=0]
PARTITION=2

PARTITION_WALK

PSU_MAX_CURRENT

USB_MSD_EXCLUDE_VID_PID

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 45 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

A list of up to four VID/PID pairs specifying devices which the bootloader should ignore. If
this matches a HUB then the HUB won’t be enumerated, causing all downstream devices to
be excluded. This is intended to allow problematic (e.g. very slow to enumerate) devices to
be ignored during boot enumeration. This is speciQc to the bootloader and is not passed to
the OS.

The format is a comma-separated list of hexadecimal values with the VID as most
signiQcant nibble. Spaces are not allowed. E.g. 034700a0,a4231234

Default: ""

If no USB mass storage devices are found within this timeout then USB-MSD is stopped
and the next boot-mode is selected.

Minimum: 5000 (5 seconds)

Default: 20000 (20 seconds)

How long to wait in milliseconds before advancing to the next LUN e.g. a multi-slot SD-
CARD reader. This is still being tweaked but may help speed up boot if old/slow devices are
connected as well as a fast USB-MSD device containing the OS.

Minimum: 100

Default: 2000 (2 seconds)

Raspberry Pi 4 only.

When the Pi is rebooted power USB power is switched off by the hardware. A short power
off time can cause problems with some USB devices so this parameter may be used to
force a longer power off as though the cable was physically removed.

On RaspberryPi 4 version 1.3 and older, the conQgurable/long power off requires the XHCI
controller to be enabled so there is actually a short power off followed by a longer
conQgurable power off. The longer conQgurable power off may be skipped by setting this
parameter to zero.

On newer revisions the hardware ensures that USB power is off from reboot and the
bootloader only enables power after this timeout has elapsed. This is happens after
memory is initialised ensuring that USB power is off for at least two seconds. Therefore,
this parameter generally has no effect on newer hardware revisions.

Minimum: 0

Maximum: 5000

Default: 1000 (1 second)

If deQned, delays USB enumeration for the given timeout after the USB host controller has
initialised. If a USB hard disk drive takes a long time to initialise and triggers USB timeouts
then this delay can be used to give the driver additional time to initialise. It may also be
necessary to increase the overall USB timeout (USB_MSD_DISCOVER_TIMEOUT).

Minimum: 0

Maximum: 30000 (30 seconds)

Default: 0

Compute Module 4 only.

If the VL805 property is set to 1 then the bootloader will search for a VL805 PCIe XHCI
controller and attempt to initialise it with VL805 Qrmware embedded in the bootloader

USB_MSD_DISCOVER_TIMEOUT

USB_MSD_LUN_TIMEOUT

USB_MSD_PWR_OFF_TIME

USB_MSD_STARTUP_DELAY

VL805

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 46 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

EEPROM. This enables industrial designs to use VL805 XHCI controllers without providing
a dedicated SPI EEPROM for the VL805 Qrmware.

On Compute Module 4 the bootloader never writes to the dedicated VL805 SPI
EEPROM. This option just conQgures the controller to load the Qrmware from SDRAM.

Do not use this option if the VL805 XHCI controller has a dedicated EEPROM. It will fail
to initialise because the VL805 ROM will attempt to use a dedicated SPI EEPROM if
Qtted.

The embedded VL805 Qrmware assumes the same USB conQguration as Raspberry Pi
4B (two USB 3.0 ports and four USB 2.0 ports). There is no support for loading alternate
VL805 Qrmware images, a dedicated VL805 SPI EEPROM should be used instead for
such conQgurations.

Default: 0

This property is a bit-Qeld which controls the verbosity of USB debug messages for mass
storage boot-mode. Enabling all of these messages generates a huge amount of log data
which will slow down booting and may even cause boot to fail. For verbose logs it’s best to
use NETCONSOLE.

Value Log

0x1 USB descriptors

0x2 Mass storage mode state machine

0x4 Mass storage mode state machine - verbose

0x8 All USB requests

0x10 Device and hub state machines

0x20 All xHCI TRBs (VERY VERBOSE)

0x40 All xHCI events (VERY VERBOSE)

To combine values, add them together. For example:

Default: 0x0 (no USB debug messages enabled)

After reading config.txt the GPU Qrmware start4.elf reads the bootloader EEPROM
conQg and checks for a section called [config.txt]. If the [config.txt] section exists
then the contents from the start of this section to the end of the Qle is appended in
memory, to the contents of the config.txt Qle read from the boot partition. This can be
used to automatically apply settings to every operating system, for example, dtoverlays.

WARNING

If you conQgure the bootloader with an invalid conQguration that fails to boot, you must
re-Gash the bootloader EEPROM with a valid conQguration to boot.

TIP

Some conQguration properties live in config.txt. For more information about those
properties, see conQguration properties.

Edit this on GitHub

WHITE PAPER

XHCI_DEBUG

Enable mass storage and USB descriptor logging
XHCI_DEBUG=0x3

[config.txt] section

Display Parallel Interface (DPI)

Using a DPI Display on the Raspberry Pi

https://www.raspberrypi.com/documentation/computers/config_txt.html#configuration-properties
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/display-parallel-interface.adoc
https://pip.raspberrypi.com/categories/685-whitepapers-app-notes/documents/RP-003471-WP/Using-a-DPI-display.pdf

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 47 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Using a DPI
Display on

the
Raspberry

Pi

Display Parallel Interface (DPI) displays can be connected to Raspberry
Pi devices via the 40-pin general-purpose input/output (GPIO)
connector as an alternative to using the dedicated Display Serial
Interface (DSI) or High-DeQnition Multimedia Interface (HDMI) ports.

An up-to-24-bit parallel RGB interface is available on all Raspberry Pi boards with the 40
way header and the Compute Modules. This interface allows parallel RGB displays to be
attached to the Raspberry Pi GPIO either in RGB24 (8 bits for red, green and blue) or
RGB666 (6 bits per colour) or RGB565 (5 bits red, 6 green, and 5 blue).

This interface is controlled by the GPU Qrmware and can be programmed by a user via
special config.txt parameters and by enabling the correct Linux Device Tree overlay.

One of the alternate functions selectable on Bank 0 of the Raspberry Pi GPIO is DPI
(Display Parallel Interface) which is a simple clocked parallel interface (up to 8 bits of R, G
and B; clock, enable, hsync, and vsync). This interface is available as alternate function 2
(ALT2) on GPIO Bank 0:

GPIO ALT2

GPIO0 PCLK

GPIO1 DE

GPIO2 LCD_VSYNC

GPIO3 LCD_HSYNC

GPIO4 DPI_D0

GPIO5 DPI_D1

GPIO6 DPI_D2

GPIO7 DPI_D3

GPIO8 DPI_D4

GPIO9 DPI_D5

GPIO10 DPI_D6

GPIO11 DPI_D7

GPIO12 DPI_D8

GPIO13 DPI_D9

GPIO14 DPI_D10

GPIO15 DPI_D11

GPIO16 DPI_D12

GPIO17 DPI_D13

GPIO18 DPI_D14

GPIO19 DPI_D15

GPIO20 DPI_D16

GPIO21 DPI_D17

GPIO22 DPI_D18

GPIO23 DPI_D19

GPIO24 DPI_D20

GPIO25 DPI_D21

GPIO26 DPI_D22

GPIO pins

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 48 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

GPIO27 DPI_D23

NOTE

There are various ways that the colour values can be presented on the DPI output pins
in either 565, 666, or 24-bit modes (see the following table and the output_format part
of the dpi_output_format parameter below):

M
o
d
e

R
G
B
b
it
s

GPIO

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4

1 -

2 5
6
5

- - - - - - - - 7 6 5 4 3 7 6 5 4 3 2 7 6 5 4 3

3 5
6
5

- - - 7 6 5 4 3 - - 7 6 5 4 3 2 - - - 7 6 5 4 3

4 5
6
5

- - 7 6 5 4 3 - - - 7 6 5 4 3 2 - - 7 6 5 4 3 -

5 6
6
6

- - - - - - 7 6 5 4 3 2 7 6 5 4 3 2 7 6 5 4 3 2

6 6
6
6

- - 7 6 5 4 3 2 - - 7 6 5 4 3 2 - - 7 6 5 4 3 2

7 8
8
8

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

All other peripheral overlays that use conGicting GPIO pins must be disabled. In
config.txt, take care to comment out or invert any dtparams that enable I2C or SPI:

The Kernel Mode Setting (KMS) generic display interface enables output to arbitrary
displays, as long as you have an appropriate driver.

Auto detect allows your Raspberry Pi to connect with a display without a manually
conQgured device tree overlay. Auto detection is enabled by default. You can enable display
auto detect by adding the following line to config.txt:

Replace the 1 with a 0 to disable auto detect. When you connect the oTcial Raspberry Pi
display with auto detect enabled, KMS determines the display model automatically and
conQgures the appropriate display settings.

Disable other GPIO peripherals

dtparam=i2c_arm=off
dtparam=spi=off

ConKgure a display

Auto detect

display_auto_detect=1

Manually conDgure a display

https://en.wikipedia.org/wiki/Direct_Rendering_Manager#Kernel_mode_setting

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 49 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

NOTE

In Raspberry Pi OS Bookworm or later, the dpi_output_format and dpi_timings
entries in config.txt previously used to set up DPI have been superseded by the vc4-
kms-dpi-generic overlay.

To use any display other than the oTcial Raspberry Pi display, you must specify a
dtoverlay entry in config.txt. The panel manufacturer should conQgure timings for your
display in Linux kernel code and provide an overlay to enable those settings. See the
Adafruit Kippah display entry for an example. The following example demonstrates how to
set a dtoverlay entry for the Kippah display in your /boot/firmware/config.txt Qle:

Display timings are usually deQned in the kernel, but you can also deQne them in the
provided panel-dpi driver. If your panel lacks a deQned overlay in kernel code, you can use
the panel-dpi driver to deQne display timings as parameters. This enables you to
manually conQgure a device tree entry for any display.

The following example demonstrates how you can deQne timings using device tree
parameters:

NOTE

Device tree line length must not exceed 80 characters. When a setting requires a line
longer than 80 characters, split the assignment of that parameter across multiple lines.

Parameter display tree deQnitions support the following options:

Option Description

clock-frequency Display clock frequency (Hz)

hactive Horizontal active pixels

hfp Horizontal front porch

hsync Horizontal sync pulse width

hbp Horizontal back porch

vactive Vertical active lines

vfp Vertical front porch

vsync Vertical sync pulse width

vbp Vertical back porch

hsync-invert Horizontal sync active low

vsync-invert Vertical sync active low

de-invert Data Enable active low

pixclk-invert Negative edge pixel clock

width-mm De]nes the screen width in millimetres

height-mm De]nes the screen height in millimetres

rgb565 Change to RGB565 output on GPIOs 0-19

rgb666-padhi Change to RGB666 output on GPIOs 0-9, 12-17, and 20-25

rgb888 Change to RGB888 output on GPIOs 0-27

bus-format Override the bus format for a MEDIA_BUS_FMT_* value, also
overridden by rgbXXX overrides

backlight-gpio De]nes a GPIO to be used for backlight control (default value:
none)

dtoverlay=vc4-kms-kippah-7inch-overlay

dtoverlay=vc4-kms-v3d
dtoverlay=vc4-kms-dpi-generic,hactive=480,hfp=26,hsync=16,hbp=10
dtparam=vactive=640,vfp=25,vsync=10,vbp=16
dtparam=clock-frequency=32000000,rgb666-padhi

https://github.com/raspberrypi/linux/blob/rpi-6.1.y/arch/arm/boot/dts/overlays/vc4-kms-kippah-7inch-overlay.dts
https://www.raspberrypi.com/documentation/computers/config_txt.html#what-is-config-txt

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 50 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Edit this on GitHub

You can Qnd a 40-pin GPIO (general-purpose input/output) header on all current Raspberry
Pi boards. The GPIO headers on all boards have a 0.1in (2.54mm) pin pitch.

NOTE

The header is unpopulated (has no headers) on Zero and Pico devices that lack the "H"
suTx.

General Purpose I/O (GPIO) pins can be conQgured as either general-purpose input,
general-purpose output, or as one of up to six special alternate settings, the functions of
which are pin-dependent.

NOTE

The GPIO pin numbering scheme is not in numerical order. GPIO pins 0 and 1 are
present on the board (physical pins 27 and 28), but are reserved for advanced use.

A GPIO pin designated as an output pin can be set to high (3.3V) or low (0V).

A GPIO pin designated as an input pin can be read as high (3.3V) or low (0V). This is made
easier with the use of internal pull-up or pull-down resistors. Pins GPIO2 and GPIO3 have
Qxed pull-up resistors, but for other pins this can be conQgured in software.

A GPIO reference can be accessed on your Raspberry Pi by opening a terminal window and
running the command pinout. This tool is provided by the GPIO Zero Python library, which

GPIO and the 40-pin header

Outputs

Inputs

View a GPIO pinout for your Raspberry Pi

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/gpio-on-raspberry-pi.adoc
https://gpiozero.readthedocs.io/

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 51 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

is installed by default in Raspberry Pi OS.

WARNING

While connecting simple components to GPIO pins is safe, be careful how you wire
things up. LEDs should have resistors to limit the current passing through them. Do not
use 5V for 3.3V components. Do not connect motors directly to the GPIO pins, instead
use an H-bridge circuit or a motor controller board.

In order to use the GPIO ports, your user must be a member of the gpio group. The default
user account is a member by default, but you must add other users manually using the
following command:

The GPIO connections on the BCM2835 package are sometimes referred to in the
peripherals data sheet as "pads" — a semiconductor design term meaning "chip connection
to outside world".

The pads are conQgurable CMOS push-pull output drivers/input buffers. Register-based
control settings are available for:

Internal pull-up / pull-down enable/disable

Output drive strength

Input Schmitt-trigger Qltering

All GPIO pins revert to general-purpose inputs on power-on reset. The default pull states
are also applied, which are detailed in the alternate function table in the Arm peripherals
datasheet. Most GPIOs have a default pull applied.

Each GPIO pin, when conQgured as a general-purpose input, can be conQgured as an
interrupt source to the Arm. Several interrupt generation sources are conQgurable:

Level-sensitive (high/low)

Rising/falling edge

Asynchronous rising/falling edge

Level interrupts maintain the interrupt status until the level has been cleared by system
software (e.g. by servicing the attached peripheral generating the interrupt).

The normal rising/falling edge detection has a small amount of synchronisation built into
the detection. At the system clock frequency, the pin is sampled with the criteria for
generation of an interrupt being a stable transition within a three-cycle window, i.e. a record
of 1 0 0 or 0 1 1. Asynchronous detection bypasses this synchronisation to enable the
detection of very narrow events.

Almost all of the GPIO pins have alternative functions. Peripheral blocks internal to the SoC
can be selected to appear on one or more of a set of GPIO pins, for example the I2C buses
can be conQgured to at least three separate locations. Pad control, such as drive strength
or Schmitt Qltering, still applies when the pin is conQgured as an alternate function.

Some functions are available on all pins, others on speciQc pins:

PWM (pulse-width modulation)

Software PWM available on all pins

Permissions

$ sudo usermod -a -G gpio <username>

GPIO pads

Power-on states

Interrupts

Alternative functions

https://projects.raspberrypi.org/en/projects/physical-computing/14

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 52 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Hardware PWM available on GPIO12, GPIO13, GPIO18, GPIO19

SPI

SPI0: MOSI (GPIO10); MISO (GPIO9); SCLK (GPIO11); CE0 (GPIO8), CE1 (GPIO7)

SPI1: MOSI (GPIO20); MISO (GPIO19); SCLK (GPIO21); CE0 (GPIO18); CE1 (GPIO17);
CE2 (GPIO16)

I2C

Data: (GPIO2); Clock (GPIO3)

EEPROM Data: (GPIO0); EEPROM Clock (GPIO1)

Serial

TX (GPIO14); RX (GPIO15)

Two 5V pins and two 3.3V pins are present on the board, as well as a number of ground
pins (GND), which can not be reconQgured. The remaining pins are all general-purpose 3.3V
pins, meaning outputs are set to 3.3V and inputs are 3.3V-tolerant.

The table below gives the various voltage speciQcations for the GPIO pins for BCM2835,
BCM2836, BCM2837 and RP3A0-based products (e.g. Raspberry Pi Zero or Raspberry Pi
3+). For information about Compute Modules you should see the relevant datasheets.

Symbol Parameter Conditions
 

Min Typical Max Unit

VIL Input Low
Voltage

- - - 0.9 V

VIH Input high

voltagea
- 1.6 - - V

IIL Input
leakage
current

TA =
+85◦C

- - 5 µA

CIN Input
capacitanc
e

- - 5 - pF

VOL Output low

voltageb
IOL = -2mA - - 0.14 V

VOH Output
high

voltageb

IOH = 2mA 3.0 - - V

IOL Output low

currentc
VO = 0.4V 18 - - mA

IOH Output
high

currentc

VO = 2.3V 17 - - mA

RPU Pullup
resistor

- 50 - 65 kΩ

RPD Pulldown
resistor

- 50 - 65 kΩ

a Hysteresis enabled
b Default drive strength (8mA)
c Maximum drive strength (16mA)

The table below gives the voltage speciQcations for the GPIO pins on BCM2711-based
products (4-series devices). For information about Compute Modules you should see the
relevant datasheets.

Voltage speciKcations

https://www.raspberrypi.com/documentation/computers/compute-module.html#specifications
https://www.raspberrypi.com/documentation/computers/compute-module.html#specifications

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 53 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Symbol Parameter Conditions
 

Min Typical Max Unit

VIL Input Low
Voltage

- - - 0.8 V

VIH Input high

voltagea
- 2.0 - - V

IIL Input
leakage
current

TA =
+85◦C

- - 10 µA

VOL Output low

voltageb
IOL = -4mA - - 0.4 V

VOH Output
high

voltageb

IOH = 4mA 2.6 - - V

IOL Output low

currentc
VO = 0.4V 7 - - mA

IOH Output
high

currentc

VO = 2.6V 7 - - mA

RPU Pullup
resistor

- 33 - 73 kΩ

RPD Pulldown
resistor

- 33 - 73 kΩ

a Hysteresis enabled
b Default drive strength (4mA)
c Maximum drive strength (8mA)

Edit this on GitHub

GPIO drive strengths do not indicate a maximum current, but a maximum current under
which the pad will still meet the speciQcation. You should set the GPIO drive strengths to
match the device being attached in order for the device to work correctly.

Inside the pad are a number of drivers in parallel. If the drive strength is set low (0b000),
most of these are tri-stated so they do not add anything to the output current. If the drive
strength is increased, more and more drivers are put in parallel. The diagram shows that
behaviour.

WARNING

On 4-series devices, the current level is half the value shown in the diagram.

GPIO pads control

Control drive strength

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/gpio-pad-controls.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 54 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

The current value speciQes the maximum current under which the pad will still meet the
speciQcation.

Current value is not the current that the pad will deliver, and is not a current limit.

The pad output is a voltage source:

If set high, the pad will try to drive the output to the rail voltage (3.3V)

If set low, the pad will try to drive the output to ground (0V)

The pad will try to drive the output high or low. Success will depend on the requirements of
what is connected. If the pad is shorted to ground, it will not be able to drive high. It will try
to deliver as much current as it can, and the current is only limited by the internal
resistance.

If the pad is driven high and it is shorted to ground, in due time it will fail. The same holds
true if you connect it to 3.3V and drive it low.

Meeting the speciQcation is determined by the guaranteed voltage levels. Because the pads
are digital, there are two voltage levels, high and low. The I/O ports have two parameters
which deal with the output level:

VOL, the maximum low-level voltage (0.14V at 3.3V VDD IO)

VOH, the minimum high-level voltage (3.0V at 3.3V VDD IO)

VOL=0.14V means that if the output is Low, it will be <= 0.14V. VOH=3.0V means that if the

output is High, it will be >= 3.0V.

As an example, a drive strength of 16mA means that if you set the pad high, you can draw
up to 16mA, and the output voltage is guaranteed to be >=VOH. This also means that if you

set a drive strength of 2mA and you draw 16mA, the voltage will not be VOH but lower. In

fact, it may not be high enough to be seen as high by an external device.

There is more information on the physical characteristics of the GPIO pins.

NOTE

On the Compute Module devices, it is possible to change the VDD IO from the standard
3.3V. In this case, VOL and VOH will change according to the table in the GPIO section.

The Raspberry Pi 3.3V supply was designed with a maximum current of ~3mA per GPIO
pin. If you load each pin with 16mA, the total current is 272mA. The 3.3V supply will
collapse under that level of load. Big current spikes will happen, especially if you have a

Current value

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 55 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

capacitive load. Spikes will bounce around all the other pins near them. This is likely to
cause interference with the SD card, or even the SDRAM behaviour.

All the electronics of the pads are designed for 16mA. This is a safe value under which you
will not damage the device. Even if you set the drive strength to 2mA and then load it so
16mA comes out, this will not damage the device. Other than that, there is no guaranteed
maximum safe current.

0x 7e10 002c PADS (GPIO 0-27)

0x 7e10 0030 PADS (GPIO 28-45)

0x 7e10 0034 PADS (GPIO 46-53)

Bits Field name Description Type Reset

31:24 PASSWRD Must be 0x5A
when writing;
accidental write
protect
password

W 0

23:5 Reserved - Write
as 0, read as
don’t care

4 SLEW Slew rate; 0 =
slew rate
limited; 1 = slew
rate not limited

RW 0x1

3 HYST Enable input
hysteresis; 0 =
disabled; 1 =
enabled

RW 0x1

2:0 DRIVE Drive strength,
see breakdown
list below

RW 0x3

Beware of Simultaneous Switching Outputs (SSO) limitations which are device-dependent
as well as dependent on the quality and layout of the PCB, the amount and quality of the
decoupling capacitors, the type of load on the pads (resistance, capacitance), and other
factors beyond the control of Raspberry Pi.

0 = 2mA

1 = 4mA

2 = 6mA

3 = 8mA

4 = 10mA

5 = 12mA

6 = 14mA

7 = 16mA

Edit this on GitHub

Raspberry Pi is often used as part of another product. This documentation describes some

Safe current

GPIO addresses

Drive strength list

Industrial use of the Raspberry Pi

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/raspberry-pi-industrial.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 56 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

extra facilities available to use other capabilities of your Raspberry Pi.

WHITE PAPER

Using the
one-time

programmabl
e memory on

Raspberry
Pi single-

board
computers

All Raspberry Pi single-board computers (SBCs) have an inbuilt area of
one-time programmable (OTP) memory, which is actually part of the
main system on a chip (SoC). As its name implies, OTP memory can
be written to (i.e. a binary 0 can be changed to a 1) only once. Once a
bit has been changed to 1, it can never be returned to 0. One way of
looking at the OTP is to consider each bit as a fuse. Programming it
involves deliberately blowing the fuse — an irreversible process, as you
cannot get inside the chip to replace it!

This whitepaper assumes that the Raspberry Pi is running the
Raspberry Pi operating system (OS), and is fully up-to-date with the
latest Qrmware and kernels.

There are a number of OTP values that can be used. To see a list of all the OTP values, run
the following command:

Some interesting lines from this dump are:

28 - Serial number

29 - Ones complement of serial number

30 - Board revision number

Also, from 36 to 43 (inclusive), there are eight rows of 32 bits available for the customer.

NOTE

On BCM2712 devices these numbers are different. Row 31 is the serial number and row
32 is the board revision number. The customer rows are 77 to 84 inclusive.

Some of these rows can be programmed with vcmailbox. This is a Linux driver interface to
the Qrmware which will handle the programming of the rows. To do this, please refer to the
documentation, and the vcmailbox example application.

The vcmailbox application can be used directly from the command line on Raspberry Pi OS.
An example usage would be:

…which will return something like:

The above uses the mailbox property interface GET_BOARD_SERIAL with a request size of 8
bytes and response size of 8 bytes (sending two integers for the request 0, 0). The
response to this will be two integers (0x00000020 and 0x80000000) followed by the tag
code, the request length, the response length (with the 31st bit set to indicate that it is a
response) then the 64-bit serial number (where the MS 32 bits are always 0).

One-time programmable settings

Using the one-time programmable memory on Raspberry Pi single-
board computers

$ vcgencmd otp_dump

$ vcmailbox 0x00010004 8 8 0 0

0x00000020 0x80000000 0x00010004 0x00000008 0x800000008 0xnnnnnnnn 0x000
00000 0x00000000

Write and read customer OTP values

https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface
https://github.com/raspberrypi/userland/blob/master/host_applications/linux/apps/vcmailbox/vcmailbox.c
https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface
https://pip.raspberrypi.com/categories/685-whitepapers-app-notes/documents/RP-003611-WP/Using-the-One-time-programmable-memory-on-Raspberry-Pi-single-board-computers.pdf

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 57 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

WARNING

The OTP values are one-time programmable. Once a bit has been changed from 0 to 1,
it can’t be changed back.

To set the customer OTP values you will need to use the SET_CUSTOMER_OTP (0x38021) tag
as follows:

start_num = the Qrst row to program from 0-7

number = number of rows to program

value = each value to program

So, to program OTP customer rows 4, 5, and 6 to 0x11111111, 0x22222222, 0x33333333
respectively, you would use:

This will then program rows 40, 41, and 42.

To read the values back, you can use:

This should display:

If you’d like to integrate this functionality into your own code, you should be able to achieve
this by using the vcmailbox.c code as an example.

It is possible to lock the OTP changes to avoid them being edited again.

This can be done using a special argument with the OTP write mailbox:

Once locked, the customer OTP values can no longer be altered. Note that this locking
operation is irreversible.

The customer region can be marked as read only with the following command.

OTP is only locked until the device is reset, so OTP locks need to be reapplied on every
boot.

It is possible to prevent the customer OTP bits from being read at all. This can be done
using a special argument with the OTP write mailbox:

This operation is unlikely to be useful for the vast majority of users, and is irreversible.

$ vcmailbox 0x00038021 [8 + number * 4] [8 + number * 4] [start_num] [nu
mber] [value] [value] [value] ...

$ vcmailbox 0x00038021 20 20 4 3 0x11111111 0x22222222 0x33333333

$ vcmailbox 0x00030021 20 20 4 3 0 0 0

0x0000002c 0x80000000 0x00030021 0x00000014 0x80000014 0x00000000 0x0000
0003 0x11111111 0x22222222 0x33333333

Locking OTP on non-BCM2712 devices

$ vcmailbox 0x00038021 8 8 0xffffffff 0xaffe0000

Locking OTP on BCM2712 devices

$ vcmailbox 0x00030086 4 4 0

Making customer OTP bits unreadable on non-
BCM2712 devices

$ vcmailbox 0x00038021 8 8 0xffffffff 0xaffebabe

Customer MAC addresses on BCM2712 devices

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 58 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

On BCM2712 devices the Ethernet, Wi-Fi and Bluetooth MAC addresses are set in OTP
memory. These values can change with customer values.

Get customer mac address vcmailbox 0x00030082/3/4 6 6 0 0, where 2 is Ethernet, 3
is Wi-Fi and 4 is Bluetooth:

In order to set a customer MAC address, it has to be sent as two 32 words with the bytes in
the right order. You can run a command to check it’s formatted properly:

Check the log to see if the MAC address matches your expectations:

A multicast address is not considered valid. The least signiQcant bit in the most signiQcant
octet of a MAC address is the multicast bit, so make sure this is not set.

You can then set the customer MAC address with the command vcmailbox
0x00038082/3/4 6 6 <row1> <row0>:

If a customer MAC address is set to ff:ff:ff:ff:ff:ff, then it’s ignored.

Devices that use the Broadcom BCM2712 processor have 16 rows of OTP data (512 bits)
to support Qlesystem encryption. Devices that do not use BCM2712 have 8 rows of OTP
(256 bits) available for use as a device-speciQc private key.

These rows can be programmed and read using similar vcmailbox commands to those
used for managing customer OTP rows. If secure-boot / Qle-system encryption is not
required, then the device private key rows can be used to store general-purpose
information.

The device private key rows can only be read via the vcmailbox command which
requires access to /dev/vcio which is restricted to the video group on Raspberry Pi
OS.

Raspberry Pi computers do not have a hardware protected key store. It is recommended
that this feature is used in conjunction with Secure Boot in order to restrict access to
this data.

Raspberry Pi OS does not support an encrypted root-Qlesystem.

See Cryptsetup for more information about open-source disk encryption.

NOTE

The rpi-otp-private-key script only works on devices that use the Broadcom
BCM2711 or BCM2712 processors.

The rpi-otp-private-key script wraps the device private key vcmailbox APIs to make it
easier to read and write a key in the OpenSSL format.

NOTE

The usbboot repository contains all the tools you need, including rpi-eeprom as a Git
submodule.

Read the 32-byte key as a 64-character hex number:

$ vcmailbox 0x00030083 6 6 0 0
0x00000020 0x80000000 0x00030083 0x00000006 0x80000006 0xddccbbaa 0x0000
ffee 0x00000000

$ vcmailbox 0x00030085 6 6 0x44332211 0x6655

$ sudo vclog -m
1057826.701: read mac address 11:22:33:44:55:66

$ vcmailbox 0x00038082 6 6 0x44332211 0x6655

Device-speciKc private key

Program a key into OTP with rpi-otp-private-key

$ cd usbboot/tools

https://www.raspberrypi.com/documentation/computers/processors.html#bcm2711
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2712
https://github.com/raspberrypi/usbboot
https://github.com/raspberrypi/rpi-eeprom
https://github.com/raspberrypi/usbboot/blob/master/secure-boot-example/README.md
https://gitlab.com/cryptsetup/cryptsetup
https://github.com/raspberrypi/rpi-eeprom/blob/master/tools/rpi-otp-private-key

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 59 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Example output:

Writes a 32-byte randomly generated number to the device private key.

WARNING

This operation cannot be undone.

NOTE

To specify the number of OTP rows to use, pass -l <word count>. To specify a start
location in the key store, pass -o <word offset>.

Read all of the rows.

Example output:

Write all of the row (replace the trailing eight zeros with the key data):

Write the key shown in the previous example:

Edit this on GitHub

All SoCs used by the Raspberry Pi range have a inbuilt one-time programmable (OTP)
memory block. A few locations have factory-programmed data.

OTP memory size:

non-BCM2712 devices: 66 32-bit values

BCM2712 devices: 192 32-bit values

To display the contents of the OTP, run the following command:

This list contains the publicly available information on the registers. If a register or bit is not
deQned here, then it is not public.

16
OTP control register - BCM2711

Bit 26: disables VC JTAG

Bit 27: disables VC JTAG

$ rpi-otp-private-key

f8dbc7b0a4fcfb1d706e298ac9d0485c2226ce8df7f7596ac77337bd09fbe160

$ rpi-otp-private-key -w $(openssl rand -hex 32)

Mailbox API for reading/writing the key

$ vcmailbox 0x00030081 40 40 0 8 0 0 0 0 0 0 0 0

0x00000040 0x80000000 0x00030081 0x00000028 0x80000028 0x00000000 0x0000
0008 0xf8dbc7b0 0xa4fcfb1d 0x706e298a 0xc9d0485c 0x2226ce8d 0xf7f7596a 0
xc77337bd 0x09fbe160 0x00000000

$ vcmailbox 0x00038081 40 40 0 8 0 0 0 0 0 0 0 0

$ vcmailbox 0x38081 40 40 0 8 0xf8dbc7b0 0xa4fcfb1d 0x706e298a 0xc9d0485
c 0x2226ce8d 0xf7f7596a 0xc77337bd 0x09fbe160

OTP register and bit deInitions

$ vcgencmd otp_dump

OTP registers on non-BCM2712 devices

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/otp-bits.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 60 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

17
bootmode register

Bit 1: sets the oscillator frequency to 19.2MHz

Bit 3: enables pull ups on the SDIO pins

Bit 15: disables ROM RSA key 0 - (secure boot enabled if set) (BCM2711)

Bit 19: enables GPIO bootmode

Bit 20: sets the bank to check for GPIO bootmode

Bit 21: enables booting from SD card

Bit 22: sets the bank to boot from

Bit 28: enables USB device booting

Bit 29: enables USB host booting (ethernet and mass storage)

NOTE

On BCM2711 the bootmode is deQned by the bootloader EEPROM conQguration
instead of OTP.

18
copy of bootmode register

28
serial number

29
~(serial number)

30

revision code 1

33
board revision extended - the meaning depends on the board model. This is available
via device-tree in /proc/device-tree/chosen/rpi-boardrev-ext and for testing
purposes this OTP value can be temporarily overridden by setting board_rev_ext in
config.txt.

Compute Module 4

Bit 30: Whether the Compute Module has a Wi-Fi module Qtted

0 - Wi-Fi

1 - No Wi-Fi

Bit 31: Whether the Compute Module has an EMMC module Qtted

0 - EMMC

1 - No EMMC (Lite)

Raspberry Pi 400

Bits 0-7: The default keyboard country code used by piwiz

35
High 32 bits of 64-bit serial number

36-43
customer OTP values

45
MPG2 decode key

46
WVC1 decode key

47-54

https://github.com/raspberrypi-ui/piwiz

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 61 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

SHA256 of RSA public key for secure-boot

55
secure-boot Gags (reserved for use by the bootloader)

56-63
256-bit device-speciQc private key

64-65
MAC address; if set, system will use this in preference to the automatically generated
address based on the serial number

66
advanced boot register (not BCM2711)

Bits 0-6: GPIO for ETH_CLK output pin

Bit 7: enables ETH_CLK output

Bits 8-14: GPIO for LAN_RUN output pin

Bit 15: enables LAN_RUN output

Bit 24: extends USB HUB timeout parameter

Bit 25: ETH_CLK frequency:

0 - 25MHz

1 - 24MHz

1Also contains bits to disable overvoltage, OTP programming, and OTP reading.

This list contains the publicly available information on the registers. If a register or bit is not
deQned here, then it is not public.

22
bootmode register

Bit 1: Boot from SD card

Bits 2-4: Booting from SPI EEPROM (and which GPIOs)

Bit 10: Disable booting from SD card

Bit 11: Disable booting from SPI

Bit 12: Disable booting from USB

23
copy of bootmode register

29
advanced boot mode

Bits 0-7: GPIO for SD card detect

Bits 8-15: GPIO to use for RPIBOOT

31
lower 32 bits of serial number

32
board revision

33
board attributes - the meaning depends on the board model. This is available via
device-tree in /proc/device-tree/chosen/rpi-boardrev-ext

35
upper 32 bits of serial number The full 64 bit serial number is available in
/proc/device-tree/serial-number

OTP Registers on BCM2712 devices

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 62 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

50-51
Ethernet MAC address This is passed to the operating system in the Device Tree, e.g.
/proc/device-tree/axi/pcie@120000/rp1/ethernet@100000/local-mac-
address

52-53
Wi-Fi MAC address This is passed to the operating system in the Device Tree, e.g.
/proc/device-tree/axi/mmc@1100000/wifi@1/local-mac-address

54-55
Bluetooth MAC address This is passed to the operating system in the Device Tree,
e.g. /proc/device-tree/soc/serial@7d50c000/bluetooth/local-bd-address

77-84
customer OTP values

86
board country - The default keyboard country code used by piwiz If set, this is
available via Device Tree in /proc/device-tree/chosen/rpi-country-code

87-88
customer Ethernet MAC address Overrides OTP rows 50-51 if set

89-90
customer Wi-Fi MAC address Overrides OTP rows 52-53 if set

89-90
customer Bluetooth MAC address Overrides OTP rows 54-55 if set

109-114
Factory device UUID Currently a 16-digit numerical id which should match the bar
code on the device. Padded with zero characters and c40 encoded.

This is available via device-tree in /proc/device-tree/chosen/rpi-duid.

Edit this on GitHub

Raspberry Pi connector for PCIe

Raspberry Pi 5 has an FPC connector on the right-hand side of the board. This connector
breaks out a PCIe Gen 2.0 ×1 interface for fast peripherals.

To connect a PCIe HAT+ device, connect it to your Raspberry Pi. Your Raspberry Pi should
automatically detect the device. To connect a non-HAT+ device, connect it to your
Raspberry Pi, then manually enable PCIe.

For more information about the PCIe FPC connector pinout and other details needed to
create third-party devices, accessories, and HATs, see the Raspberry Pi Connector for PCIe
standards document. It should be read alongside the Raspberry Pi HAT+ SpeciQcation.

NOTE

Only certain devices support enumeration of PCIe devices behind a switch.

Raspberry Pi connector for PCIe

https://github.com/raspberrypi/firmware/issues/1833
https://github.com/raspberrypi-ui/piwiz
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/pcie.adoc
https://datasheets.raspberrypi.com/hat/hat-plus-specification.pdf
https://datasheets.raspberrypi.com/pcie/pcie-connector-standard.pdf
https://datasheets.raspberrypi.com/hat/hat-plus-specification.pdf

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 63 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

By default, the PCIe connector is not enabled unless connected to a HAT+ device. To
enable the connector, add the following line to /boot/firmware/config.txt:

Reboot with sudo reboot for the conQguration changes to take effect.

NOTE

You can also use the alias nvme.

By default, Raspberry Pi devices do not boot from PCIe storage. To enable boot from PCIe,
change the BOOT_ORDER in the bootloader conQguration. Edit the EEPROM conQguration
with the following command:

Replace the BOOT_ORDER line with the following line:

To boot from a non-HAT+ device, also add the following line:

After saving your changes, reboot your Raspberry Pi with sudo reboot to update the
EEPROM.

WARNING

The Raspberry Pi 5 is not certiQed for Gen 3.0 speeds. PCIe Gen 3.0 connections may
be unstable.

By default, Raspberry Pi 5 uses Gen 2.0 speeds (5 GT/s). Use one of the following
approaches to force Gen 3.0 (8 GT/s) speeds:

To enable PCIe Gen 3.0 speeds, add the following line to
/boot/firmware/config.txt:

Reboot your Raspberry Pi with sudo reboot for these settings to take effect.

Edit this on GitHub

NOTE

This section only applies to Raspberry Pi models with a power button, such as the
Raspberry Pi 5.

When you plug your Raspberry Pi into power for the Qrst time, it will automatically turn on
and boot into the operating system without having to push the button.

If you run Raspberry Pi Desktop, you can initiate a clean shutdown by brieGy pressing the
power button. A window will appear asking whether you want to shutdown, reboot, or
logout.

Select an option or press the power button again to initiate a clean shutdown.

Enable PCIe

dtparam=pciex1

Boot from PCIe

$ sudo rpi-eeprom-config --edit

BOOT_ORDER=0xf416

PCIE_PROBE=1

PCIe Gen 3.0

config.txt raspi-config

dtparam=pciex1_gen=3

Power button

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/power-button.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 64 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

NOTE

If you run Raspberry Pi Desktop, you can press the power button twice in quick
succession to shut down. If you run Raspberry Pi OS Lite without a desktop, press the
power button a single time to initiate a shutdown.

If the Raspberry Pi board is turned off, but still connected to power, pressing the power
button restarts the board.

NOTE

Resetting the Power Management Integrated Circuit (PMIC) can also restart the board.
Connecting a HAT can reset the PMIC. Always disconnect your device from the power
supply before connecting a HAT.

To force a hard shutdown, press and hold the power button.

The J2 jumper

The J2 jumper is located between the RTC battery connector and the board edge. This
breakout allows you to add your own power button to Raspberry Pi 5 by adding a Normally
Open (NO) momentary switch bridging the two pads. BrieGy closing this switch will perform
the same actions as the onboard power button.

Edit this on GitHub

The power supply requirements differ by Raspberry Pi model. All models require a 5.1V
supply, but the current required generally increases according to model. All models up to
the Raspberry Pi 3 require a micro USB power connector, while Raspberry Pi 4, Raspberry Pi
400, and Raspberry Pi 5 use a USB-C connector.

The current consumed by each Raspberry Pi depends on the peripherals connected.

For Raspberry Pi 1, Raspberry Pi 2, and Raspberry Pi 3, we recommend the 2.5A micro USB
supply. For Raspberry Pi 4 and Raspberry Pi 400, we recommend the 3A USB-C Supply for
Raspberry Pi 4. For Raspberry Pi 5, we recommend the 27W USB-C Power Supply.

NOTE

No Raspberry Pi models support USB-PPS.

Restart

Hard shutdown

Add your own power button

Power supply

Recommended power supplies

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/power-supplies.adoc
https://www.raspberrypi.com/products/micro-usb-power-supply/
https://www.raspberrypi.com/products/type-c-power-supply/
https://www.raspberrypi.com/products/27w-power-supply/

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 65 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

NOTE

If you use a third-party USB-PD multi-port power supply, plugging an additional device
into the supply when your Raspberry Pi is connected causes a renegotiation between
the supply and the Raspberry Pi. If the Raspberry Pi is powered, this happens
seamlessly. If the Raspberry Pi is powered down, this renegotiation may cause the
Raspberry Pi to boot.

Raspberry Pi 5 PoE header

The Ethernet jack on Raspberry Pi 5 is PoE+ capable, supporting the IEEE 802.3at-2009
PoE standard.

The Ethernet jack on Raspberry Pi 4B and Pi 3B+ is PoE capable, supporting the IEEE
802.3af-2003 PoE standard.

All Raspberry Pi models with a PoE-capable Ethernet jack require a HAT to draw power
through the Ethernet port. For models that support PoE, we recommend the PoE HAT. For
models that support PoE+, we recommend the PoE+ HAT.

Product Recommended PSU
current capacity

Maximum total USB
peripheral current
draw

Typical bare-board
active current
consumption

Raspberry Pi 1 Model
A

700mA 500mA 200mA

Raspberry Pi 1 Model
B

1.2A 500mA 500mA

Raspberry Pi 1 Model
A+

700mA 500mA 180mA

Raspberry Pi 1 Model
B+

1.8A 1.2A 330mA

Raspberry Pi 2 Model
B

1.8A 1.2A 350mA

Raspberry Pi 3 Model
B

2.5A 1.2A 400mA

Raspberry Pi 3 Model
A+

2.5A Limited by PSU,
board, and connector
ratings only.

350mA

Raspberry Pi 3 Model
B+

2.5A 1.2A 500mA

Raspberry Pi 4 Model
B

3.0A 1.2A 600mA

Raspberry Pi 5 5.0A 1.6A (600mA if using
a 3A power supply)

800mA

Power over Ethernet (PoE) connector

Typical power requirements

https://www.raspberrypi.com/products/poe-hat/
https://www.raspberrypi.com/products/poe-plus-hat/

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 66 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Pi 400 3.0A 1.2A 800mA

Pi 500 5.0A 1.6A (600mA if using
a 3A power supply)

800mA

Zero 1.2A Limited by PSU,
board, and connector
ratings only

100mA

Zero W 1.2A Limited by PSU,
board, and connector
ratings only.

150mA

Zero 2 W 2A Limited by PSU,
board, and connector
ratings only.

350mA

NOTE

The Raspberry Pi 5 provides 1.6A of power to downstream USB peripherals when
connected to a power supply capable of 5A at +5V (25W). When connected to any other
compatible power supply, the Raspberry Pi 5 restricts downstream USB devices to
600mA of power.

Most Raspberry Pis provide enough current to USB peripherals to power most USB devices,
including keyboards, mice, and adapters. However, some devices require additional current,
including modems, external disks, and high-powered antenna. To connect a USB device
with power requirements that exceed the values speciQed in the table above, connect it
using an externally-powered USB hub.

The power requirements of the Raspberry Pi increase as you make use of the various
interfaces on the Raspberry Pi. Combined, the GPIO pins can draw 50mA safely; each pin
can individually draw up to 16mA. The HDMI port uses 50mA. The Camera Module requires
250mA. USB keyboards and mice can take as little as 100mA or as much as 1000mA.
Check the power rating of the devices you plan to connect to the Raspberry Pi and
purchase a power supply accordingly. If you’re not sure, use an externally-powered USB
hub.

Run the following command to check the status of power output to the USB ports:

The following table describes the amount of power (in amps) drawn by different Raspberry
Pi models during various workloads:

Raspberry
Pi 1B+

Raspberry
Pi 2B

Raspberry
Pi 3B

Raspberry
Pi Zero

Raspberry
Pi 4B

Boot Max 0.26 0.40 0.75 0.20 0.85

Avg 0.22 0.22 0.35 0.15 0.7

Idle Avg 0.20 0.22 0.30 0.10 0.6

Video
playback
(H.264)

Max 0.30 0.36 0.55 0.23 0.85

Avg 0.22 0.28 0.33 0.16 0.78

Stress Max 0.35 0.82 1.34 0.35 1.25

Avg 0.32 0.75 0.85 0.23 1.2

Halt
current

0.10 0.055 0.023

$ vcgencmd get_config usb_max_current_enable

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 67 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

NOTE

These measurements used a standard Raspberry Pi OS image (current as of 26 Feb
2016, or June 2019 for the Raspberry Pi 4), at room temperature, with the Raspberry Pi
connected to a HDMI monitor, USB keyboard, and USB mouse. The Raspberry Pi 3
Model B was connected to a wireless LAN access point, the Raspberry Pi 4 was
connected to Ethernet. All these power measurements are approximate and do not take
into account power consumption from additional USB devices; power consumption can
easily exceed these measurements if multiple additional USB devices or a HAT are
connected to the Raspberry Pi.

WHITE PAPER

Extra PMIC
features on

Raspberry
Pi 4 and
Compute

Module 4

A number of different PMIC devices have been used on both Raspberry
Pi 4 and CM4. All the PMICs provide extra functionality alongside that
of voltage supply. This document describes how to access these
features in software.

By default, the Raspberry Pi 5 consumes around 1W to 1.4W of power when turned off.
This can be decreased by manually editing the EEPROM conQguration with sudo rpi-
eeprom-config -e. Change the settings to the following:

This should drop the power consumption when powered down to around 0.01W.

On all models of Raspberry Pi since the Raspberry Pi B+ (2014) except the Zero range,
there is low-voltage detection circuitry that will detect if the supply voltage drops below
4.63V (±5%). This will result in an entry being added to the kernel log.

If you see warnings, switch to a higher quality power supply and cable. Low quality power
supplies can corrupt storage or cause unpredictable behaviour within the Raspberry Pi.

Voltages can drop for a variety of reasons. You may have plugged in too many high-
demand USB devices. The power supply could be inadequate. Or the power supply cable
could use wires that are too thin.

WHITE PAPER

Making a
more

resilient
file system

Raspberry Pi devices are frequently used as data storage and
monitoring devices, often in places where sudden power-downs may
occur. As with any computing device, power dropouts can cause
storage corruption.

This white paper provides some options on how to prevent data
corruption under these and other circumstances by selecting
appropriate Qle systems and setups to ensure data integrity.

The bootloader passes information about the power supply via device-tree /proc/device-
tree/chosen/power. Users will typically not read this directly.

max_current
The max current in mA

Extra PMIC features on Raspberry Pi 4 and Compute Module 4

Decrease Raspberry Pi 5 wattage when turned off

BOOT_UART=1
POWER_OFF_ON_HALT=1
BOOT_ORDER=0xf416

Power supply warnings

Making a more resilient Ale system

Power supplies and Raspberry Pi OS

https://pip.raspberrypi.com/categories/685-whitepapers-app-notes/documents/RP-004340-WP/Extra-PMIC-features-on-Raspberry-Pi-4-and-Compute-Module-4.pdf
https://pip.raspberrypi.com/categories/685-whitepapers-app-notes/documents/RP-003610-WP/Making-a-more-resilient-file-system.pdf

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 68 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

uspd_power_data_objects
A dump of the PDOs - debug for advanced users

usb_max_current_enable
Whether the current limiter was set to high or low

usb_over_current_detected
Whether any USB over current occurred during boot before transferring control to the
OS

reset_event
The PMIC reset reason e.g. watchdog, over- or under-voltage, over-temperature

The PMIC has built-in ADCs that, among other things, can measure the supply voltage
EXT5V_V. Use the following command to view ADC measurements:

You can’t see USB current or anything else connected directly to 5V, because this bypasses
the PMIC. You should not expect this to add up to the wattage of the source power supply.
However, it can be useful to monitor things like the core voltage.

The USB speciQcation requires that USB devices must not supply current to upstream
devices. If a USB device does supply current to an upstream device, then this is called
back-powering. Often this happens when a badly-made powered USB hub is connected,
and will result in the powered USB hub supplying power to the host Raspberry Pi. This is
not recommended since the power being supplied to the Raspberry Pi via the hub will
bypass the protection circuitry built into the Raspberry Pi, leaving it vulnerable to damage in
the event of a power surge.

Edit this on GitHub

The Raspberry Pi 5 includes an RTC module. This can be battery powered via the J5 (BAT)
connector on the board located to the right of the USB-C power connector.

The J5 battery connector

You can set a wake alarm which will switch the board to a very low-power state
(approximately 3mA). When the alarm time is reached, the board will power back on. This
can be useful for periodic jobs like time-lapse imagery.

To support the low-power mode for wake alarms, edit the bootloader conQguration:

adding the following two lines.

You can test the functionality with:

$ vcgencmd pmic_read_adc

Back-powering

Real Time Clock (RTC)

$ sudo -E rpi-eeprom-config --edit

POWER_OFF_ON_HALT=1
WAKE_ON_GPIO=0

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/rtc.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 69 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

That will halt the board into a very low-power state, then wake and restart after 10 minutes.

The RTC also provides the time on boot e.g. in dmesg, for use cases that lack access to
NTP:

NOTE

The RTC is still usable even when there is no backup battery attached to the J5
connector.

Lithium-manganese rechargeable RTC battery

The oTcial battery part is a rechargeable lithium manganese coin cell, with a pre-Qtted two-
pin JST-SH plug and an adhesive mounting pad. This is suitable for powering the RTC when
the main power supply for the board is disconnected. Since the current draw when
powered down measures in single-digit µA, the retention time measures in months.

NOTE

We do not recommend using a primary (non-rechargeable) lithium cell for the RTC. The
RTC backup current consumption is higher than most dedicated RTC modules and will
result in a short service life.

WARNING

Do not use a Lithium Ion cell for the RTC.

The RTC is equipped with a constant-current (3mA) constant-voltage charger.

Charging of the battery is disabled by default. There are sysfs Qles that show the charging
voltage and limits:

To charge the battery at a set voltage, add rtc_bbat_vchg to
/boot/firmware/config.txt:

$ echo +600 | sudo tee /sys/class/rtc/rtc0/wakealarm
$ sudo halt

[1.295799] rpi-rtc soc:rpi_rtc: setting system clock to 2023-08-16T1
5:58:50 UTC (1692201530)

Add a backup battery

Enable battery charging

/sys/devices/platform/soc/soc:rpi_rtc/rtc/rtc0/charging_voltage:0
/sys/devices/platform/soc/soc:rpi_rtc/rtc/rtc0/charging_voltage_max:4400
000
/sys/devices/platform/soc/soc:rpi_rtc/rtc/rtc0/charging_voltage_min:1300
000

dtparam=rtc_bbat_vchg=3000000

https://github.com/raspberrypi/firmware/blob/master/boot/overlays/README#L279

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 70 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Reboot with sudo reboot to use the new voltage setting. Check the sysfs Qles to ensure
that the charging voltage was correctly set.

To stop charging, remove any lines that contain rtc_bbat_vchg from config.txt.

Edit this on GitHub

Raspberry Pi computers are equipped with a number of SPI buses. SPI can be used to
connect a wide variety of peripherals - displays, network controllers (Ethernet, CAN bus),
UARTs, etc. These devices are best supported by kernel device drivers, but the spidev API
allows userspace drivers to be written in a wide array of languages.

Raspberry Pi Zero, 1, 2 and 3 have three SPI controllers:

SPI0, with two hardware chip selects, is available on the header of all Raspberry Pis;
there is also an alternate mapping that is only available on Compute Modules.

SPI1, with three hardware chip selects, is available on all Raspberry Pi models except
the original Raspberry Pi 1 Model A and Model B.

SPI2, also with three hardware chip selects, is only available on Compute Module 1, 3
and 3+.

On the Raspberry Pi 4, 400 and Compute Module 4 there are four additional SPI buses:
SPI3 to SPI6, each with two hardware chip selects. These extra SPI buses are available via
alternate function assignments on certain GPIO pins. For more information, see the
BCM2711 Arm peripherals datasheet.

Chapter 10 in the BCM2835 Arm peripherals datasheet describes the main controller.
Chapter 2.3 describes the auxiliary controller.

SPI function Header pin Broadcom pin name Broadcom pin
function

MOSI 19 GPIO10 SPI0_MOSI

MISO 21 GPIO09 SPI0_MISO

SCLK 23 GPIO11 SPI0_SCLK

CE0 24 GPIO08 SPI0_CE0_N

CE1 26 GPIO07 SPI0_CE1_N

SPI function Broadcom pin name Broadcom pin function

MOSI GPIO38 SPI0_MOSI

MISO GPIO37 SPI0_MISO

SCLK GPIO39 SPI0_SCLK

CE0 GPIO36 SPI0_CE0_N

CE1 GPIO35 SPI0_CE1_N

SPI function Header pin Broadcom pin name Broadcom pin
function

MOSI 38 GPIO20 SPI1_MOSI

Disable battery charging

Serial peripheral interface (SPI)

SPI hardware

Pin/GPIO mappings

SPI0

SPI0 alternate mapping (Compute Modules only, except CM4)

SPI1

https://github.com/raspberrypi/firmware/blob/master/boot/overlays/README#L279
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/spi-bus-on-raspberry-pi.adoc
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://datasheets.raspberrypi.com/bcm2835/bcm2835-peripherals.pdf

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 71 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

MISO 35 GPIO19 SPI1_MISO

SCLK 40 GPIO21 SPI1_SCLK

CE0 12 GPIO18 SPI1_CE0_N

CE1 11 GPIO17 SPI1_CE1_N

CE2 36 GPIO16 SPI1_CE2_N

SPI function Broadcom pin name Broadcom pin function

MOSI GPIO41 SPI2_MOSI

MISO GPIO40 SPI2_MISO

SCLK GPIO42 SPI2_SCLK

CE0 GPIO43 SPI2_CE0_N

CE1 GPIO44 SPI2_CE1_N

CE2 GPIO45 SPI2_CE2_N

SPI function Header pin Broadcom pin name Broadcom pin
function

MOSI 03 GPIO02 SPI3_MOSI

MISO 28 GPIO01 SPI3_MISO

SCLK 05 GPIO03 SPI3_SCLK

CE0 27 GPIO00 SPI3_CE0_N

CE1 18 GPIO24 SPI3_CE1_N

SPI function Header pin Broadcom pin name Broadcom pin
function

MOSI 31 GPIO06 SPI4_MOSI

MISO 29 GPIO05 SPI4_MISO

SCLK 26 GPIO07 SPI4_SCLK

CE0 07 GPIO04 SPI4_CE0_N

CE1 22 GPIO25 SPI4_CE1_N

SPI function Header pin Broadcom pin name Broadcom pin
function

MOSI 08 GPIO14 SPI5_MOSI

MISO 33 GPIO13 SPI5_MISO

SCLK 10 GPIO15 SPI5_SCLK

CE0 32 GPIO12 SPI5_CE0_N

CE1 37 GPIO26 SPI5_CE1_N

SPI function Header pin Broadcom pin name Broadcom pin
function

MOSI 38 GPIO20 SPI6_MOSI

MISO 35 GPIO19 SPI6_MISO

SCLK 40 GPIO21 SPI6_SCLK

SPI2 (Compute Modules only, except CM4)

SPI3 (BCM2711 only)

SPI4 (BCM2711 only)

SPI5 (BCM2711 only)

SPI6 (BCM2711 only)

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 72 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

CE0 12 GPIO18 SPI6_CE0_N

CE1 13 GPIO27 SPI6_CE1_N

Signal name abbreviations:

SCLK
serial clock

CE
chip enable (often called chip select)

MOSI
master out slave in

MISO
master in slave out

MOMI
master out master in

In Standard SPI mode the peripheral implements the standard three-wire serial protocol
(SCLK, MOSI and MISO).

In bidirectional SPI mode the same SPI standard is implemented, except that a single wire
is used for data (MOMI) instead of the two used in standard mode (MISO and MOSI). In this
mode, the MOSI pin serves as MOMI pin.

The LoSSI standard allows issuing of commands to peripherals (LCD) and to transfer data
to and from them. LoSSI commands and parameters are 8 bits long, but an extra bit is
used to indicate whether the byte is a command or parameter/data. This extra bit is set
high for data and low for a command. The resulting 9-bit value is serialised to the output.
LoSSI is commonly used with MIPI DBI type C compatible LCD controllers.

NOTE

Some commands trigger an automatic read by the SPI controller, so this mode cannot
be used as a multipurpose 9-bit SPI.

Polled

Interrupt

DMA

The clock divider (CDIV) Qeld of the CLK register sets the SPI clock speed:

SCLK
Core Clock / CDIV

If CDIV is set to 0, the divisor is 65536. The divisor must be a multiple of 2, with odd
numbers rounded down. Note that not all possible clock rates are usable because of
analogue electrical issues (rise times, drive strengths, etc).

See the Linux driver section for more info.

Setup and hold times related to the automatic assertion and de-assertion of the CS lines
when operating in DMA mode are as follows:

Master modes

Standard mode

Bidirectional mode

Low speed serial interface (LoSSI) mode

Transfer modes

Speed

Chip selects

http://mipi.org/specifications/display-interface

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 73 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

The CS line will be asserted at least three core clock cycles before the msb of the Qrst
byte of the transfer.

The CS line will be de-asserted no earlier than one core clock cycle after the trailing edge
of the Qnal clock pulse.

The default Linux driver is spi-bcm2835.

SPI0 is disabled by default. To enable it, use raspi-conQg, or ensure the line
dtparam=spi=on is not commented out in /boot/firmware/config.txt. By default it uses
two chip select lines, but this can be reduced to one using dtoverlay=spi0-1cs. There is
also dtoverlay=spi0-2cs; without any parameters it is equivalent to dtparam=spi=on.

To enable SPI1, you can use 1, 2 or 3 chip select lines. Add the appropriate lines to
/boot/firmware/config.txt:"

Similar overlays exist for SPI2, SPI3, SPI4, SPI5 and SPI6.

The driver does not make use of the hardware chip select lines because of some
limitations. Instead, it can use an arbitrary number of GPIOs as software/GPIO chip selects.
This means you are free to choose any spare GPIO as a CS line, and all of these SPI
overlays include that control - see /boot/firmware/overlays/README for details, or run
(for example) dtoverlay -h spi0-2cs (dtoverlay -a | grep spi might be helpful to
list them all).

The driver supports all speeds which are even integer divisors of the core clock, although
as said above not all of these speeds will support data transfer due to limits in the GPIOs
and in the devices attached. As a rule of thumb, anything over 50MHz is unlikely to work,
but your mileage may vary.

SPI_CPOL
clock polarity

SPI_CPHA
clock phase

SPI_CS_HIGH
chip select active high

SPI_NO_CS
1 device per bus, no Chip select

SPI_3WIRE
bidirectional mode, data in and out pin shared

Bidirectional mode, also called 3-wire mode, is supported by the spi-bcm2835 kernel
module. Please note that in this mode, either the tx or rx Qeld of the spi_transfer struct
must be a NULL pointer, since only half-duplex communication is possible. Otherwise, the
transfer will fail. The spidev_test.c source code does not consider this correctly, and
therefore does not work at all in 3-wire mode.

8 - normal

9 - supported using LoSSI mode

SPI software

Linux driver

#1 chip select
dtoverlay=spi1-1cs
#2 chip select
dtoverlay=spi1-2cs
#3 chip select
dtoverlay=spi1-3cs

Speed

Supported mode bits

Supported bits per word

https://www.raspberrypi.com/documentation/computers/configuration.html#raspi-config
https://www.raspberrypi.com/documentation/computers/config_txt.html#what-is-config-txt

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 74 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Interrupt mode is supported on all SPI buses. SPI0, and SPI3-6 also support DMA transfers.

This thread discusses latency problems.

spidev presents an ioctl-based userspace interface to individual SPI CS lines. Device
Tree is used to indicate whether a CS line is going to be driven by a kernel driver module or
managed by spidev on behalf of the user; it is not possible to do both at the same time.
Note that Raspberry Pi’s own kernels are more relaxed about the use of Device Tree to
enable spidev - the upstream kernels print warnings about such usage, and ultimately may
prevent it altogether.

There is a loopback test program in the Linux documentation that can be used as a starting
point. See the Troubleshooting section.

There are several Python libraries that provide access to spidev, including spidev (pip
install spidev - see https://pypi.org/project/spidev/) and SPI-Py
(https://github.com/lthiery/SPI-Py).

The following command writes binary 1, 2, and 3:

There are other user space libraries that provide SPI control by directly manipulating the
hardware: this is not recommended.

This can be used to test SPI send and receive. Put a wire between MOSI and MISO. It does
not test CE0 and CE1.

Some of the content above has been copied from the elinux SPI page, which also borrows
from here. Both are covered by the CC-SA licence.

Edit this on GitHub

In general, every device supported by Linux can be used with a Raspberry Pi, although there
are some limitations for models prior to Raspberry Pi 4.

Transfer modes

SPI driver latency

spidev

Use spidev from C

Use spidev from Python

Use spidev from a shell such as bash

$ echo -ne "\x01\x02\x03" > /dev/spidev0.0

Other SPI libraries

Troubleshooting

Loopback test

$ wget https://raw.githubusercontent.com/raspberrypi/linux/rpi-6.1.y/too
ls/spi/spidev_test.c
$ gcc -o spidev_test spidev_test.c
$./spidev_test -D /dev/spidev0.0
spi mode: 0
bits per word: 8
max speed: 500000 Hz (500 KHz)

FF FF FF FF FF FF
40 00 00 00 00 95
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
DE AD BE EF BA AD
F0 0D

Universal Serial Bus (USB)

Maximum power output

https://forums.raspberrypi.com/viewtopic.php?f=44&t=19489
https://pypi.org/project/spidev/
https://github.com/lthiery/SPI-Py
https://elinux.org/RPi_SPI
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/usb-bus-on-raspberry-pi.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 75 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

As with all computers, the USB ports on the Raspberry Pi supply a limited amount of power.
Often problems with USB devices are caused by power issues. To rule out insuTcient
power as the cause of the problem, connect your USB devices to the Raspberry Pi using a
powered hub.

Model Max power output of USB ports

Raspberry Pi Zero, 1 500mA per port1

Raspberry Pi 2, 3, 4 1200mA total across all ports

Raspberry Pi 5 600mA if using a 3A supply, 1600mA if using
a 5A supply

1. For the original Raspberry Pi 1 Model B the limit is 100mA per port.

The Raspberry Pi 5 requires a good quality USB-C power supply capable of delivering 3A at
+5V (15W) in order to boot. However, using such a supply will restrict current draw to
peripherals. If you are using a power supply that cannot provide 5A at +5V on Qrst boot you
will be warned by the operating system that the current draw to peripherals will be
restricted to 600mA.

For users who wish to drive high-power peripherals like hard drives and SSDs, while
retaining margin for peak workloads, a USB-PD enabled power supply capable of supplying
a 5A at +5V (25W) should be used. If the Raspberry Pi 5 Qrmware detects such a supply, it
increases the USB current limit for peripherals to 1.6A, providing 5W of extra power for
downstream USB devices, and 5W of extra onboard power budget.

NOTE

The power budget is shared between the USB ports and the fan header.

Raspberry Pi 4 offers two USB 3.0 ports and two USB 2.0 ports which are connected to a
VL805 USB controller. The USB 2.0 lines on all four ports are connected to a single USB 2.0
hub within the VL805. This limits the total available bandwidth for USB 1.1 and USB 2.0
devices to that of a single USB 2.0 port.

On Raspberry Pi 4, the USB controller used on previous models is located on the USB type
C port and is disabled by default.

Raspberry Pi 1 Model B+, Raspberry Pi 2, and Raspberry Pi 3 boards offer four USB 2.0
ports. Raspberry Pi Zero boards have one micro USB on-the-go (OTG) port.

The USB controller on models prior to Raspberry Pi 4 has only a basic level of support for
certain devices, which presents a higher software processing overhead. It also supports
only one root USB port: all traTc from connected devices is funnelled down this single bus,
which operates at a maximum speed of 480Mbps.

The USB 2.0 speciQcation deQnes three device speeds - low, full and high. Most mice and
keyboards are low speed, most USB sound devices are full speed, and most video devices
(webcams or video capture) are high speed.

Generally, there are no issues with connecting multiple high speed USB devices to a
Raspberry Pi.

The software overhead incurred when talking to low- and full-speed devices means that
there are limitations on the number of simultaneously active low- and full-speed devices.
Small numbers of these types of devices connected to a Raspberry Pi will cause no issues.

Raspberry Pi 5

Raspberry Pi 4

Raspberry Pi Zero, 1, 2 and 3

Known USB issues

Interoperability with USB 3.0 hubs

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 76 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

There is an issue with USB 3.0 hubs in conjunction with the use of full- or low-speed
devices, including most mice and keyboards. A bug in most USB 3.0 hub hardware means
that the models prior to Raspberry Pi 4 cannot talk to full or low speed devices connected
to a USB 3.0 hub.

USB 2.0 high speed devices, including USB 2.0 hubs, operate correctly when connected via
a USB 3.0 hub.

Avoid connecting low or full speed devices into a USB 3.0 hub. As a workaround, plug a
USB 2.0 hub into the downstream port of the USB 3.0 hub and connect the low-speed
device, or use a USB 2.0 hub between the Raspberry Pi and the USB 3.0 hub, then plug low-
speed devices into the USB 2.0 hub.

Old webcams may be full-speed devices. Because these devices transfer a lot of data and
incur additional software overhead, reliable operation is not guaranteed. As a workaround,
try to use the camera at a lower resolution.

Expensive audiophile sound cards typically use large amounts of USB bandwidth. Reliable
operation with 96kHz/192kHz DACs is not guaranteed. As a workaround, forcing the output
stream to be CD quality (44.1kHz/48kHz 16-bit) will reduce the stream bandwidth to
reliable levels.

USB 2.0 and 3.0 hubs have a mechanism for talking to full- or low-speed devices connected
to their downstream ports called a transaction translator (TT). This device buffers high
speed requests from the host and transmits them at full or low speed to the downstream
device. Two conQgurations of hub are allowed by the USB speciQcation: Single TT (one TT
for all ports) and Multi TT (one TT per port). Because of a hardware limitation, if too many
full- or low-speed devices are plugged into a single TT hub, the devices may behave
unreliably. It is recommended to use a Multi TT hub to interface with multiple full and low
speed devices. As a workaround, spread full- and low-speed devices out between the
Raspberry Pi’s own USB port and the single TT hub.

Edit this on GitHub

Each distinct Raspberry Pi model revision has a unique revision code. You can look up a
Raspberry Pi’s revision code by running:

The last three lines show the hardware type, the revision code, and the Raspberry Pi’s
unique serial number. For example:

NOTE

All Raspberry Pi computers report BCM2835, even those with BCM2836, BCM2837,
BCM2711, and BCM2712 processors. You should not use this string to detect the
processor. Decode the revision code using the information below, or cat
/sys/firmware/devicetree/base/model. Depending on which kernel you’re running,
your cpuinfo might also have a "Model" line, and might not have a "Hardware" line.

The Qrst set of Raspberry Pi models were given sequential hex revision codes from 0002 to
0015:

Code Model Revision RAM Manufacturer

USB 1.1 webcams

Esoteric USB sound cards

Single TT USB hubs

Raspberry Pi revision codes

$ cat /proc/cpuinfo

Hardware : BCM2835
Revision : a02082
Serial : 00000000765fc593

Old-style revision codes

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/raspberry-pi/revision-codes.adoc

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 77 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

0002 B 1.0 256MB Egoman

0003 B 1.0 256MB Egoman

0004 B 2.0 256MB Sony UK

0005 B 2.0 256MB Qisda

0006 B 2.0 256MB Egoman

0007 A 2.0 256MB Egoman

0008 A 2.0 256MB Sony UK

0009 A 2.0 256MB Qisda

000d B 2.0 512MB Egoman

000e B 2.0 512MB Sony UK

000f B 2.0 512MB Egoman

0010 B+ 1.2 512MB Sony UK

0011 CM1 1.0 512MB Sony UK

0012 A+ 1.1 256MB Sony UK

0013 B+ 1.2 512MB Embest

0014 CM1 1.0 512MB Embest

0015 A+ 1.1 256MB/512MB Embest

With the launch of the Raspberry Pi 2, new-style revision codes were introduced. Rather
than being sequential, each bit of the hex code represents a piece of information about the
revision:

Part Represents Options

N (bit 31) Overvoltage 0: Overvoltage allowed

1: Overvoltage disallowed

O (bit 30) OTP Program1 0: OTP programming allowed

1: OTP programming
disallowed

Q (bit 29) OTP Read1 0: OTP reading allowed

1: OTP reading disallowed

uuu (bits 26-28) Unused Unused

W (bit 25) Warranty bit2 0: Warranty is intact

1: Warranty has been voided
by overclocking

u (bit 24) Unused Unused

F (bit 23) New jag 1: new-style revision

0: old-style revision

MMM (bits 20-22) Memory size 0: 256MB

1: 512MB

2: 1GB

3: 2GB

4: 4GB

5: 8GB

New-style revision codes

NOQuuuWuFMMMCCCCPPPPTTTTTTTTRRRR

https://www.raspberrypi.com/documentation/computers/config_txt.html#overclocking-options

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 78 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

6: 16GB

CCCC (bits 16-19) Manufacturer 0: Sony UK

1: Egoman

2: Embest

3: Sony Japan

4: Embest

5: Stadium

PPPP (bits 12-15) Processor 0: BCM2835

1: BCM2836

2: BCM2837

3: BCM2711

4: BCM2712

TTTTTTTT (bits 4-11) Type 0x00: A

0x01: B

0x02: A+

0x03: B+

0x04: 2B

0x05: Alpha (early prototype)

0x06: CM1

0x08: 3B

0x09: Zero

0x0a: CM3

0x0c: Zero W

0x0d: 3B+

0x0e: 3A+

0x0f: Internal use only

0x10: CM3+

0x11: 4B

0x12: Zero 2 W

0x13: 400

0x14: CM4

0x15: CM4S

0x16: Internal use only

0x17: 5

0x18: CM5

0x19: 500

0x1a: CM5 Lite

RRRR (bits 0-3) Revision 0, 1, 2, etc.

1 Information on programming the OTP bits.

2 The warranty bit is never set on Raspberry Pi 4.

New-style revision codes in use

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 79 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

NOTE

This list is not exhaustive - there may be codes in use that are not in this table. Please
see the next section for best practices on using revision codes to identify boards.

Code Model Revision RAM Manufacturer

900021 A+ 1.1 512MB Sony UK

900032 B+ 1.2 512MB Sony UK

a01040 2B 1.0 1GB Sony UK

a01041 2B 1.1 1GB Sony UK

a21041 2B 1.1 1GB Embest

a02042 2B (with
BCM2837)

1.2 1GB Sony UK

a22042 2B (with
BCM2837)

1.2 1GB Embest

900061 CM1 1.1 512MB Sony UK

a02082 3B 1.2 1GB Sony UK

a22082 3B 1.2 1GB Embest

a32082 3B 1.2 1GB Sony Japan

a52082 3B 1.2 1GB Stadium

a22083 3B 1.3 1GB Embest

900092 Zero 1.2 512MB Sony UK

920092 Zero 1.2 512MB Embest

900093 Zero 1.3 512MB Sony UK

920093 Zero 1.3 512MB Embest

a020a0 CM3 1.0 1GB Sony UK

a220a0 CM3 1.0 1GB Embest

9000c1 Zero W 1.1 512MB Sony UK

a020d3 3B+ 1.3 1GB Sony UK

a020d4 3B+ 1.4 1GB Sony UK

9020e0 3A+ 1.0 512MB Sony UK

9020e1 3A+ 1.1 512MB Sony UK

a02100 CM3+ 1.0 1GB Sony UK

a03111 4B 1.1 1GB Sony UK

b03111 4B 1.1 2GB Sony UK

c03111 4B 1.1 4GB Sony UK

b03112 4B 1.2 2GB Sony UK

c03112 4B 1.2 4GB Sony UK

b03114 4B 1.4 2GB Sony UK

c03114 4B 1.4 4GB Sony UK

d03114 4B 1.4 8GB Sony UK

b03115 4B 1.5 2GB Sony UK

c03115 4B 1.5 4GB Sony UK

d03115 4B 1.5 8GB Sony UK

902120 Zero 2 W 1.0 512MB Sony UK

c03130 400 1.0 4GB Sony UK

a03140 CM4 1.0 1GB Sony UK

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 80 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

b03140 CM4 1.0 2GB Sony UK

c03140 CM4 1.0 4GB Sony UK

d03140 CM4 1.0 8GB Sony UK

b04170 5 1.0 2GB Sony UK

c04170 5 1.0 4GB Sony UK

d04170 5 1.0 8GB Sony UK

b04171 5 1.1 2GB Sony UK

c04171 5 1.1 4GB Sony UK

d04171 5 1.1 8GB Sony UK

e04171 5 1.1 16GB Sony UK

b04180 CM5 1.0 2GB Sony UK

c04180 CM5 1.0 4GB Sony UK

d04180 CM5 1.0 8GB Sony UK

d04190 500 1.0 8GB Sony UK

b041a0 CM5 Lite 1.0 2GB Sony UK

c041a0 CM5 Lite 1.0 4GB Sony UK

d041a0 CM5 Lite 1.0 8GB Sony UK

From the command line we can use the following to get the revision code of the board:

In this example above, we have a hexadecimal revision code of c03111. Converting this to
binary, we get 0 0 0 000 0 0 1 100 0000 0011 00010001 0001. Spaces have been
inserted to show the borders between each section of the revision code, according to the
above table.

Starting from the lowest order bits, the bottom four (0-3) are the board revision number, so
this board has a revision of 1. The next eight bits (4-11) are the board type, in this case
binary 00010001, hex 11, so this is a Raspberry Pi 4B. Using the same process, we can
determine that the processor is a BCM2711, the board was manufactured by Sony UK, and
it has 4GB of RAM.

Obviously there are so many programming languages out there it’s not possible to give
examples for all of them, but here are two quick examples for C and Python. Both these
examples use a system call to run a bash command that gets the cpuinfo and pipes the
result to awk to recover the required revision code. They then use bit operations to extract
the New, Model, and Memory Qelds from the code.

Using revision codes for board identiKcation

$ cat /proc/cpuinfo | grep Revision
Revision : c03111

Getting the revision code in your program

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *fp;
 char revcode[32];

 fp = popen("cat /proc/cpuinfo | awk '/Revision/ {print $3}'", "r");
 if (fp == NULL)
 exit(1);
 fgets(revcode, sizeof(revcode), fp);
 pclose(fp);

 int code = strtol(revcode, NULL, 16);
 int new = (code >> 23) & 0x1;
 int model = (code >> 4) & 0xff;
 int mem = (code >> 20) & 0x7;

 if (new && model == 0x11 && mem >= 3) // Note, 3 in the mem field is
2GB
 printf("We are a 4B with at least 2GB of RAM!\n");

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 81 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

And the same in Python:

To avoid problems when new board revisions are created, do not use the revision code (e.g.
c03111).

A naive implementation uses a list of supported revision codes, comparing the detected
code with the list to decide if the device is supported. This breaks when a new board
revision comes out or if the production location changes: each creates a new revision code
not in the supported revision code list. This would cause rejections of new revisions of the
same board type, despite the fact that they are always backwards-compatible. Every time a
new revision appears, you would have to release a new supported revision code list
containing the new revision code - an onerous support burden.

Instead, use one of the following approaches:

Filter by the board-type Qeld (3A, 4B, etc.), which indicates the model, but not the
revision.

Filter by the amount-of-memory Qeld, since RAM vaguely corresponds to the computing
power of a board.

For instance, you could limit support to Raspberry Pi 4B models with 2GB of RAM or more.
The examples in the previous section use this recommended approach.

NOTE

Always check bit 23, the 'New' Gag, to ensure that the revision code is the new version
before checking any other Qelds.

Support and formatting for /proc/cpuinfo varies across Linux distributions. To check the
model or CPU of a Raspberry Pi device on any Linux distribution (including Raspberry Pi
OS), check the device tree:

This outputs two null-separated string values, each containing a comma-separated make
and model. For instance, the Raspberry Pi 5 outputs the board and CPU strings above.
These correspond to the following values:

raspberrypi (board make)

5-model-b (board model)

brcm (CPU make)

bcm2712 (CPU model)

Raspberry Pi models have the following device tree values:

Device Name Make Model CPU Make CPU

 return 0;
}

import subprocess

cmd = "cat /proc/cpuinfo | awk '/Revision/ {print $3}'"
revcode = subprocess.check_output(cmd, shell=True)

code = int(revcode, 16)
new = (code >> 23) & 0x1
model = (code >> 4) & 0xff
mem = (code >> 20) & 0x7

if new and model == 0x11 and mem >= 3 : # Note, 3 in the mem field is 2G
B
 print("We are a 4B with at least 2GB RAM!")

Best practices for revision code usage

Check Raspberry Pi model and CPU across distributions

$ cat /proc/device-tree/compatible | tr '\0' '\n'
raspberrypi,5-model-b
brcm,bcm2712

05/08/2025, 5:00 PMRaspberry Pi hardware - Raspberry Pi Documentation

Page 82 of 82https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

Pi 500 raspberrypi 500 brcm bcm2712

Compute
Module 5

raspberrypi 5-compute-
module

brcm bcm2712

Raspberry Pi 5 raspberrypi 5-model-b brcm bcm2712

Pi 400 raspberrypi 400 brcm bcm2711

Compute
Module 4S

raspberrypi 4s-compute-
module

brcm bcm2711

Compute
Module 4

raspberrypi 4-compute-
module

brcm bcm2711

Raspberry Pi 4
Model B

raspberrypi 4-model-b brcm bcm2711

Zero 2 W raspberrypi model-zero-2-
w

brcm bcm2837

Compute
Module 3+

raspberrypi 3-plus-
compute-
module

brcm bcm2837

Compute
Module 3

raspberrypi 3-compute-
module

brcm bcm2837

Raspberry Pi 3
Model A+

raspberrypi 3-model-a-
plus

brcm bcm2837

Raspberry Pi 3
Model B+

raspberrypi 3-model-b-
plus

brcm bcm2837

Raspberry Pi 3
Model B

raspberrypi 3-model-b brcm bcm2837

Raspberry Pi 2
Model B

raspberrypi 2-model-b brcm bcm2836

Zero W raspberrypi model-zero-w brcm bcm2835

Zero raspberrypi model-zero brcm bcm2835

Compute
Module 1

raspberrypi compute-
module

brcm bcm2835

Raspberry Pi
Model A+

raspberrypi model-a-plus brcm bcm2835

Raspberry Pi
Model B+

raspberrypi model-b-plus brcm bcm2835

Raspberry Pi
Model B Rev 2

raspberrypi model-b-rev2 brcm bcm2835

Raspberry Pi
Model A

raspberrypi model-a brcm bcm2835

Raspberry Pi
Model B

raspberrypi model-b brcm bcm2835

You can view and edit the Raspberry Pi documentation source on Github. Please read our usage and contributions policy before you make a Pull
Request.

Raspberry Pi documentation is copyright © 2012-2025 Raspberry Pi Ltd and is licensed under a Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA) licence.

Some content originates from the eLinux wiki, and is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported licence.

The terms HDMI, HDMI High-De5nition Multimedia Interface, HDMI trade dress and the HDMI Logos are trademarks or registered trademarks of HDMI
Licensing Administrator, Inc

https://github.com/raspberrypi/documentation/
https://github.com/raspberrypi/documentation/blob/master/CONTRIBUTING.md
https://creativecommons.org/licenses/by-sa/4.0/
http://elinux.org/
http://creativecommons.org/licenses/by-sa/3.0/

